
TYPO3 Core APIs
Extension Key: doc_core_api

Copyright 2000-2004, Kasper Skårhøj, <kasperYYYY@typo3.com>

This document is published under the Open Content License

available from http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3

- a GNU/GPL CMS/Framework available from www.typo3.com

Revised for TYPO3 3.7

TYPO3 Core APIs - 1

Table of Contents
TYPO3 Core APIs.. 1

Introduction.. 3
TYPO3 Extension API................................. 4

Extension Architecture..4
Introduction... 4
Files and locations..4
System, Global and Local extensions........................ 6
Extension key... 6
Naming conventions... 7
Import and install of extensions.................................. 7
ext_tables.php and ext_localconf.php........................ 8
ext_emconf.php.. 9
Extending “extensions-classes”................................11
The Extension Manager (EM)...................................11
Basic framework for a new extension.......................12

TYPO3 API overview................................. 16
Introduction.. 16
General functions...17

High priority functions (CGL requirements).............. 17
Functions typically used and nice to know............... 26

TYPO3 Core Engine (TCE)...32
Introduction...32
Database: t3lib_TCEmain basics............................. 32
Using t3lib_TCEmain in scripts................................ 35
The "tce_db.php" API... 36
Files: t3lib_extFileFunctions basics..........................36
The "tce_file.php" API.. 38

Hooks.. 38
The concept of "hooks"...38
Hook configuration..39
Creating hooks... 41

Variables and Constants... 43
Constants... 43
Global variables..44

Backend User Object... 45
Checking user access for $BE_USER from PHP.....45

PHP Class Extension... 46
Introduction...46
Which classes?...48
Extending methods...49
User defined methods in classes..............................50
A few examples of extending the backend classes..50
Warnings.. 52

Various examples...52
Introduction...52
Rendering page trees... 53
Accessing the clipboard..54
Adding Context Sensitive Menu items......................55
Parsing HTML: t3lib_parsehtml................................ 58
Links to edit records... 62
Support for custom tables in the Page module........ 64
Adding elements to the Content Element Wizard.... 64
Using custom permission options.............................65

Table Configuration Array, $TCA.............67
Introduction.. 67

What is $TCA?... 67
Extending the $TCA array.. 67
Main levels in the $TCA array.................................. 68

$TCA array reference...70
['ctrl'] section... 70
['interface'] section.. 79

['feInterface'] section... 80
['columns'][fieldname] section...................................80
['columns'][fieldname]['config'] / TYPE: "input"......... 82
['columns'][fieldname]['config'] / TYPE: "text"........... 85
['columns'][fieldname]['config'] / TYPE: "check"........86
['columns'][fieldname]['config'] / TYPE: "radio"......... 88
['columns'][fieldname]['config'] / TYPE: "select"........88
['columns'][fieldname]['config'] / TYPE: "group"........ 97
['columns'][fieldname]['config'] / TYPE: "none"....... 102
['columns'][fieldname]['config'] / TYPE: "passthrough".
103
['columns'][fieldname]['config'] / TYPE: "user"........ 103
['columns'][fieldname]['config'] / TYPE: "flex"..........104
['types'][key] section..113
['palettes'][key] section..116

Additional $TCA features.. 117
Special Configuration introduction..........................117
Special Configuration options.................................118
Wizards Configuration.. 120
Wizard scripts in the core....................................... 125
$PAGES_TYPES... 130
Loading the full $TCA dynamically......................... 131
Benchmarks on dynamic tables:.............................132

Visual style of TCEforms...133
$TBE_STYLES entries related to TCEforms..........133
Style pointers in the "types" configuration.............. 135

RTE API.. 139
Rich Text Editors in TYPO3 backend....................... 139

Introduction... 139
RTEs in Extensions.. 139
API for Rich Text Editors.. 140
More Examples...142

Transformations... 143
Introduction... 143
Process illustration... 144
Transformation overview.. 145
Transformation details.. 146
Page TSconfig.. 148
Custom transformations API...................................152

Historical perspective on RTE transformations......154
Introduction... 154
Properties and 'transformations'............................. 154
RTE transformations in Content Elements............. 154

Skinning API.. 156
$TBE_STYLES... 156
Directory structure for “skinImgAutoCfg” feature....160
How to make your extensions compatible with
skinning.. 160
Finding CSS selectors for the backend documents.....
161
Skinning database record icons with variations..... 163

Data Formats... 167
<T3DataStructure>... 167

Introduction... 167
Elements...167
Sheet references.. 169
Syntax highlighting of a Data Structures................ 170
Parsing a Data Structure.. 171
Applications.. 172

<T3locallang>... 173
Introduction... 173
Elements...173

TYPO3 Core APIs - 2

Introduction
TYPO3 is known for its extendibility but until now there has not been a complete resource for information about the Core APIs
in TYPO3. This document aims to provide such document, sometimes very detailed and complete, at other times only
scratching the surface - but at least providing pointers into some direction.

This document is the second part of the "Inside TYPO3" document which contains the overall introduction to the architecture
of TYPO3s core. "Inside TYPO3" also contains API descriptions to a certain degree but mostly in the form of examples and
short table listings.

The documents do not contain any significant information about the frontend of TYPO3. Creating templates, setting up
TypoScript objects etc. is not the scope of these documents; they are about the backend part of the core only.

I hope these two documents, "Inside TYPO3" and "TYPO3 Core API", will finally form a complete picture of the TYPO3 Core
architecture, the backend and be the reference of choice in your work with TYPO3. It has taken me more than a year to finally
get these published!

Dedication
I want to dedicate this document to the people in TYPO3s community who has the discipline to do the boring job of writing
documentation for their extensions or contributes to TYPO3 documentation in general. It's great to have good coders, but it's
even more important to have coders with character to carry their work through till the end - even when it means spending
days writing good documents. Go for completeness!

- kasper

TYPO3 Core APIs - 3

TYPO3 Extension API

Extension Architecture
Introduction
TYPO3 can be extended in nearly any direction without loosing backwards compatibility. The Extension API provides a
powerful framework for easily adding, removing, installing and developing such extensions to TYPO3. This is in particular
powered by the Extension Manager (EM) inside TYPO3 and the online TYPO3 Extension Repository (TER) found at
typo3.org for easy sharing of extensions.

“Extensions” is a term in TYPO3 which covers two other terms, plugins and modules.

A plugin is something that plays a role on the website itself. Eg. a board, guestbook, shop etc. It is normally enclosed in a
PHP class and invoked through a USER or USER_INT cObject from TypoScript. A plugin is an extension in the frontend.

A module is a backend application which has its own position in the administration menu. It requires backend login and
works inside the framework of the backend. We might also call something a module if it exploits any connectivity of an
existing module, that is if it simply adds itself to the function menu of existing modules. A module is an extension in the
backend.

Extensions and the Core
Extensions are designed in a way so that extensions can supplement the core seemlessly. This means that a TYPO3 system
will appear as "a whole" while actually being composed of the core application and a set of extensions providing various
features. This philosophy allows TYPO3 to be developed by many individuals without loosing fine control since each
developer will have a special area (typically a system extension) of responsibility which is effectively encapsulated.

So, in one end of the spectrum system extensions makes up what is known as "TYPO3" to the outside world. In the other
end, extensions can be 100% project specific and carry only files and functionality related to a single implementation.

Files and locations

Files
An extension consists of

1. a directory named by the extension key (which is a worldwide unique identification string for the extension unless prefix
with “user_”)

2. standard files with reserved names for configuration related to TYPO3 (of which most are optional, see list below)

3. any number of additional files for the extension itself.

Reserved filenames
This list of filenames are all reserved filenames in the root directory of extensions. None of them are required but for example
you cannot have a TYPO3 extension recognized by TYPO3 without the “ext_emconf.php” file etc. You can read more details
like that in the table below.

In general, do not introduce your own files in root directory of extensions with the name prefix “ext_”.

Filename Description
ext_emconf.php Definition of extension properties

Name, category, status etc. Used by the EM. Also auto-written by EM when extensions are imported from
repository.

Notice: If this file is not present the EM will not find the extension.

ext_localconf.php Addition to “localconf.php” which is included if found. Should contain additional configuration of
$TYPO3_CONF_VARS and may include additional PHP class files.

All 'ext_localconf.php' files of included extensions are included right after the typo3conf/localconf.php file
has been included and database constants defined. Therefore you cannot setup database name, username,
password though, because database constants are defined already at this point.

Notice: Observe rules for content of these files. See section on caching below.

TYPO3 Core APIs - 4

Filename Description
ext_tables.php Addition to “tables.php” which is included if found. Should contain configuration of tables, modules, backend

styles etc. Everything which can be done in an “extTables” file is allowed here.

All 'ext_tables.php' files of loaded extensions are included right after the 'tables.php' file in the order they are
defined in the global array TYPO3_LOADED_EXT but right before a general “extTables” file (defined with
the var $typo_db_extTableDef_script in the typo3conf/localconf.php file, later set as the constant
TYPO3_extTableDef_script). Thus a general “extTables” file in typo3conf/ may overrule any settings made
by loaded extensions.
You should not use this file for setting up $TYPO3_CONF_VARS. See “ext_localconf.php”.

Notice: Observe rules for content of these files. See section below.

ext_tables.sql SQL definition of database tables.

This file should contain a table-structure dump of the tables used by the extension. It is used for evaluation
of the database structure and is therefore important to check and update the database when an extension is
enabled.
If you add additional fields (or depend on certain fields) to existing tables you can also put them here. In that
case insert a CREATE TABLE structure for that table, but remove all lines except the ones defining the
fields you need.
The ext_tables.sql file may not necessarily be “dumpable” directly to MySQL (because of the semi-complete
table definitions allowed defining only required fields, see above). But the EM or Install Tool can handle this.
The only very important thing is that the syntax of the content is exactly like MySQL made it so that the
parsing and analysis of the file is done correctly by the EM.

ext_tables_static+adt.sql Static SQL tables and their data.

If the extension requires static data you can dump it into a sql-file by this name.
Example for dumping mysql data from bash (being in the extension directory):

mysqldump --password=[password] [database name] [tablename] --add-drop-table > ./ext_tables_static.sql

--add-drop-table will make sure to include a DROP TABLE statement so any data is inserted in a fresh
table.

You can also drop the table content using the EM in the backend.

Notice: The table structure of static tables needs to be in the ext_tables.sql file as well - otherwise an
installed static table will be reported as being in excess in the EM!

ext_typoscript_constants.txt Preset TypoScript constants
Deprecated (use static template files instead, see extMgm API description)

Such a file will be included in the constants section of all TypoScript templates.

ext_typoscript_setup.txt Preset TypoScript setup
Deprecated (use static template files instead, see extMgm API description)

Such a file will be included in the setup section of all TypoScript templates.

ext_typoscript_editorcfg.txt Preset TypoScript editor configuration
Deprecated (use static template files instead, see extMgm API description)

Such a file will be included in the “Backend Editor Configuration” section of all TypoScript templates.

ext_conf_template.txt Extension Configuration template.

Configuration code in TypoScript syntax setting up a series of values which can be configured for the
extension in the EM.

If this file is present the EM provides you with an interface for editing the configuration values defined in the
file. The result is written as a serialized array to localconf.php file in the variable $TYPO3_CONF_VARS
["EXT"]["extConf"][extension_key]

The content of the “res/” folder is used for filelists in configuration forms.

If you want to do user processing before the content from the configuration form is saved (or shown for that
sake) there is a hook in the EM which is configurable with $TYPO3_CONF_VARS['SC_OPTIONS']
['typo3/mod/tools/em/index.php']['tsStyleConfigForm'][] = “function reference”

ext_icon.gif Extension Icon

18x16 gif icon for the extension.

(*/) locallang*.php Localization values.

The filename “locallang.php” (or any file matching locallang*.php) is used for traditional definition of
language labels in the $LOCAL_LANG array. If you use this name consistently those files will be detected
by the translation tool!

Notice: PLEASE DO ONLY put the definition of the variable $LOCAL_LANG into this file and don't rely on
comments in the file. The file will be automatically updated by the extension repository when translations
are applied.

TYPO3 Core APIs - 5

Filename Description
class.ext_update.php Local Update tool class

If this file is found it will install a new menu item, “UPDATE”, in the EM when looking at details for the
extension. When this menu item is selected the class inside of this file (named “ext_update”) will be
instantiated and the method “main()” will be called and expected to return HTML content.
The point of this file is to give extension developers the possibility to provide an update tool if their
extensions in newer versions require some updates to be done. For an example, see “newloginbox”
extension.

ext_api_php.dat PHP API data

A file containing a serialized PHP array with API information for the PHP classes in the extension. The file is
created - and viewed! - with tools found in the extension “extdeveval” (Extension Development Evaluator)

pi*/ Typical folder for a frontend plugin class.

mod*/ Typical folder for a backend module.

res/ Extensions normally consist of other files: Classes, images, html-files etc. Files not related to either a
frontend plugin (pi/) or backend module (mod/) might be put in a subfolder of the extension directory named
“res/” (for “resources”) but you can do it as you like (inside of the extension directory that is).
The “res/” folder content will be listed as files you can select in the configuration interface.

Files in this folder can also be selected in a selector box if you set up Extension configuration in a
“ext_conf_template.txt” file.

System, Global and Local extensions
The files for an extension are located in a folder named by the extension key. The location of this folder can be either inside
typo3/sysext/, typo3/ext/ or typo3conf/ext/.

The extension must be programmed so that it does automatically detect where it is located and can work from all three
locations. If it is not possible to make the extension that flexible, it is possible to lock its installation requirement to one of
these locations in the emconf.php file (see “lockType”)

Type Path Description
Local typo3conf/ext/ This is where to put extensions which are local for a particular TYPO3 installation. The

typo3conf/ dir is always local, containing local configuration (eg. localconf.php), local modules
etc. If you put an extension here it will be available for a single TYPO3 installation only. This is a
“per-database” way to install an extension.

Notice about symlinking: Local extension can successfully be symlinked to other local
extensions on a server as long as they are running under the same TYPO3 source version
(which would typically also be symlinked). This method is useful for maintenance of the same
local extension running under several sites on a server.

Global typo3/ext/ This is a “per-server” way to install an extension; they are global for the TYPO3 source code on
the web server. These extensions will be available for any TYPO3 installation sharing the source
code.

Notice on distribution:
TYPO3 is distributed with a fixed set of global extensions which are distributed for reasons like
popularity and sometimes history. You might want to just leave the global extensions as-is in the
distribution of TYPO3 and never change them.
Another option (when you upgrade TYPO3 source) is to copy the typo3/ext/ directory from the
former source to the new source, overriding the default directory, after which you can always
enter TYPO3 and upgrade the versions if needed. Unfortunately you can experience that global
extensions in the TYPO3 distributions are newer than those online in TER - they were simply not
updated in TER prior to the packaging of the source.
The general recommendation is to leave the global extensions as a part of the core of TYPO3
and use local extensions only for custom environments.

System typo3/sysext/ This is system default extensions which cannot and should not be updated by the EM. They are
distributed with TYPO3 core source code and generally understood to be a part of the core
system.

Loading precedence
Local extensions take precedence which means that if an extension exists both in typo3conf/ext/ and typo3/ext/ the one in
typo3conf/ext/ is loaded. Likewise global extension takes precedence over system extensions. This means that extensions
are loaded in the order of priority local-global-system.

In effect you can therefore have - say - a “stable” version of an extension installed in the global dir (typo3/ext/) which is used
by all your projects on a server sharing source code, but on a single experimental project you can import the same extension
in a newer “experimental” version and for that particular project the locally available extension will be used instead.

Extension key
The “extension key” is a string uniquely identifying the extension. The folder where the extension resides is named by this

TYPO3 Core APIs - 6

string. The string can contain characters a-z0-9 and underscore. No uppercase characters should be used (keeps folder-,file-
and table/field-names in lowercase). Furthermore the name must not start with an “tx” or “u” (this is prefixes used for
modules) and because backend modules related to the extension should be named by the extension name without
underscores, the extension name must still be unique even if underscores are removed (underscores are allowed to make the
extension key easily readable).

The naming conventions of extension keys are automatically validated by the registration at the repository, so you have
nothing to worry about here.

There are two ways to name an extension:

• Project specific extensions (not generally usable or shareable): Select any name you like and prepend it “user_” (which
is the only allowed use of a key starting with “u”). This prefix denotes that this extension is a local one which does not
come from the central TYPO3 Extension Repository or is ever intended to be shared. Probably this is an “adhoc”
extension you have made for some special occasion.

• General extensions: Register an extension name online at the TYPO3 Extension Repository. Your extension name will
automatically be validated and you are sure to have a unique name returned which nobody else in the world uses. This
makes it very easy to share your extension later on with every one else, because it ensures that no conflicts with other
extension will happen. But by default a new extension you make is defined “private” which means nobody else but you
have access to it until you permit it to be public.
It's free of charge to register an extension name. By definition all code in the TYPO3 Extension Repository is covered by
the GPL license because it interfaces with TYPO3. You should really consider making general extensions!

Suggestion: It is far the easiest to settle for the right extension key from the beginning. Changing it later involves a cascade
of name changes to tables, modules, configuration files etc.

About GPL and extensions: Remember that TYPO3 is GPL software and at the same moment you extend TYPO3 your
extensions are legally covered by GPL. This does not force you to share your extension, but it should inspire you to do so and
legally you cannot prevent anyone who gets hold of your extension code from using it and further develop it.
The TYPO3 Extension API is designed to make sharing of your work easy as well as using others work easy. Remember
TYPO3 is Open Source Software and we rely on each other in the community to develop it further.

Responsibility: It's also your responsibility to make sure that all content of your extensions is legally covered by GPL. The
webmaster of TYPO3.org reserves the right to kick out any extension without notice that is reported to contain non-GPL
material.

Naming conventions
Based on the extension key of an extension these naming conventions should be followed:

General Example User specific Example
Extension key
(Lowercase “alnum” +
underscores.)

Assigned by the TYPO3
Extension Repository.

cool_shop Determined by
yourself, but prefixed
“user_”

user_my_shop

Database tables and
fields

Prefix with “tx_[key]_” where
key is without underscores!

Prefix: tx_coolshop_
Examples:
tx_coolshop_products
tx_coolshop_categories

Prefix with “[key]_” Prefix: user_my_shop_
Examples:
user_my_shop_products
user_my_shop_categories

Backend module
(Names are always
without underscores!)

Name: The extension key
name without underscores,
prefixed “tx”

txcoolshop Name: No
underscores, prefixed
“u”

uMyShop or umyshop or ...

Frontend PHP classes (Same as database tables and fields. Prepend class file names “class.” though.)

Best practice on using underscores
If you study the naming conventions above closely you will find that they are complicated due to varying rules for underscores
in keynames; Sometimes the underscores are stripped off, sometimes not.

The best practice you can follow is to not use underscores in your extensions keys at all! That will make the rules simpler.
This is highly encouraged.

Note on “old” and default extensions:
Some the “classic” extensions from before the extension structure came about does not comply with these naming
conventions. That is an exception made for backwards compatibility. The assignment of new keys from the TYPO3 Extension
Repository will make sure that any of these old names are not accidentially reassigned to new extensions.

Further, some of the classic plugins (tt_board, tt_guest etc) users the “user_” prefix for their classes as well.

Import and install of extensions
There are only two (maybe three) simple steps involved in using extensions with TYPO3:

1. You must import it.
This simply means to copy the extensions files into the correct directory in either typo3/ext/ (global) or typo3conf/ext/

TYPO3 Core APIs - 7

(local). More commonly you import an extension directly from the online TYPO3 Extension Repository. When an
extension is found located in one of the extension locations, it is available to the system.
The EM should take care of this process, including updates to newer versions if needed.
Notice that backend modules will have their “conf.php” file modified in the install process depending on whether they are
installed locally or globally!

2. You must install it.
An extension is loaded only if its extension key is listed in comma list of the variable $TYPO3_CONF_VARS["EXT"]
["extList"]. The list of enabled extensions must be set and modified from inside typo3conf/localconf.php. Extensions are
loaded in the order they appear in this list. Any extensions listed in $TYPO3_CONF_VARS["EXT"]["requiredExt"] will be
forcibly loaded before any extensions in $TYPO3_CONF_VARS["EXT"]["extList"].
An enabled extension is always global to the TYPO3 Installation - you cannot disable an extension from being loaded in a
particular branch of the page tree.
The EM takes care enabling extensions. It's highly recommended that the EM is doing this, because the EM will make
sure the priorities, dependencies and conflicts are managed according to the extension characteristics, including clearing
of the cache-files if any.

3. You might need to configure it.
Certain extensions may allow you to configure some settings. Again the EM is able to handle the configuration of the
extensions based on a certain API for this. Any settings - if present - configured for an extension is available as an array
in the variable $TYPO3_CONF_VARS["EXT"]["extConf"][extension key].

Loaded extensions are registered in a global variable, $TYPO3_LOADED_EXT, available in both frontend and backend of
TYPO3. The loading and registration process happens in t3lib/config_default.php.

This is how the data structure for an extension in this array looks:
$TYPO3_LOADED_EXT[extension key] = Array (

“type” => S, G, L for system, global or local type of availability.
“siteRelPath” => Path of extension dir relative to the PATH_site constant

eg. “typo3/ext/my_ext/” or “typo3conf/ext/my_ext/”
“typo3RelPath” => Path of extension dir relative to the “typo3/” admin folder

eg. “ext/my_ext/” or “../typo3conf/ext/my_ext/”
“ext_localconf” => Contains absolute path to 'ext_localconf.php' file if present
“ext_tables” => [same]
“ext_tables_sql” => [same]
“ext_tables_static+adt.sql” => [same]
“ext_typoscript_constants.txt” => [same]
“ext_typoscript_setup.txt” => [same]
“ext_typoscript_editorcfg.txt” => [same]

)

The order of the registered extensions in this array corresponds to the order they were listed in TYPO3_CONF_VARS["EXT"]
["requiredExt"].TYPO3_CONF_VARS["EXT"]["extList"] with duplicates removed of course.

The inclusion of ext_tables.php or ext_localconf.php files are done by traversing (a copy of) the $TYPO3_LOADED_EXT
array.

ext_tables.php and ext_localconf.php
These two files are the most important for the execution of extensions to TYPO3. They contain configuration used within the
system on almost every request. Therefore they should be optimized for speed.

• ext_localconf.php is always included in global scope of the script, either frontend or backend.
You can put functions and classes into the script, but you should consider doing that in other ways because such classes
and functions would always be available - and it would be better if they were included only when needed.
So stick to change values in TYPO3_CONF_VARS only!

• ext_tables.php is not always included in global scope on the other hand (in the frontend)
Don't put functions and classes - or include other files which does - into this script!

• Use the API of the class extMgm for various manipulative tasks such as adding tables, merging information into arrays
etc.

• Before the inclusion of any of the two files, the variables $_EXTKEY is set to the extention-key name of the module and
$_EXTCONF is set to the configuration from $TYPO3_CONF_VARS["EXT”]["extConf"][extension key]

• $TYPO3_LOADED_EXT[extension key] contains information about whether the module is loaded as local, global or
system type, including the proper paths you might use, absolute and relative.

• The inclusion can happen in two ways:

• 1) Either the files are included individually on each request (many file includes) ($TYPO3_CONF_VARS["EXT”]
["extCache"]=0;)

• 2) or (better) the files are automatically imploded into one single temporary file (cached) in typo3conf/ directory (only
one file include) ($TYPO3_CONF_VARS["EXT”]["extCache"]=1; [or 2]). This is default (value “1”)

In effect this means:

• Your ext_tables.php / ext_localconf.php file must be designed so that it can safely be read and subsequently imploded

TYPO3 Core APIs - 8

into one single file with all the other configuration scripts!

• You must NEVER use a “return” statement in the files global scope - that would make the cached script concept break.

• You should NOT rely on the PHP constant __FILE__ for detection of include path of the script - the configuration
might be executed from a cached script and therefore such information should be derived from the
$TYPO3_LOADED_EXT[extension key] array. Eg. $TYPO3_LOADED_EXT[$_EXTKEY][“siteRelPath”]

ext_emconf.php
This script configures the extension manager. The only thing included is an array, $EM_CONF[extension_key] with these
associative keys (below in table).

When extensions are imported from the online repository this file is auto-written! So don't put any custom stuff in there - only
change values in the $EM_CONF array if needed.

Key Data type Description
title string, required The name of the extension in English.

description string, required Short and precise description in English of what the module does and for whom it might be
useful.

category string Which category the extension belongs to:

• be
Backend (Generally backend oriented, but not a module)

• module
Backend modules (When something is a module or connects with one)

• fe
Frontend (Generally frontend oriented, but not a “true” plugin)

• plugin
Frontend plugins (Plugins inserted as a “Insert Plugin” content element)

• misc
Miscellaneous stuff (Where not easily placed elsewhere)

• services
Contains TYPO3 services

• templates
Contains website templates

• example
Example extension (Which serves as examples etc.)

• doc
Documentation (Eg. tutorials, FAQ's etc.)

shy boolean If set, the extension will normally be hidden in the EM because it might be a default
extension or otherwise something which is not so important. Use this flag if an extension is of
“rare interest” (which is not the same as un-important - just an extension not sought for very
often...)
It does not affect whether or not it's enabled. Only display in EM.
Normally “shy” is set for all extensions loaded by default according to TYPO3_CONF_VARS.

dependencies list of extention-keys This is a list of other extension keys which this extension depends on being loaded before
itself. The EM will manage that dependency while writing the extension list to localconf.php

conflicts list of extention-keys List of extension keys of extensions with which this extension does not work (and so cannot
be enabled before those other extensions are un-installed)

priority “top”, “bottom” This tells the EM to try to put the extensions as the very first in the list. Default is last.

loadOrder

TYPO3 Core APIs - 9

Key Data type Description
TYPO3_version [version-span] Defines the TYPO3 version requirements of the extension.

Syntax:
• [version]-

Extension is compliant with TYPO3 from this version (included) and forward
• -[version]

Extension is compliant with TYPO3 until this version (included)
• [version]-[version]

Extension is compliant within this span of TYPO3 versions

Version string syntax is [int].[int].[int][pre-release][int] where [pre-release] is “dev”, “b” or “rc”
in that order.

Examples (in order of precedence):

4.0.0
3.6.1
3.6.1rc1
3.6.0
3.6.0rc2
3.6.0rc1
3.6.0b2
3.6.0b1
3.6.0dev2
3.6.0dev1
3.6.0dev (=3.6.0dev0)
3.5.10
3.5.0
3.1.1
3.1 (=3.1.0)
3 (=3.0.0)

PHP_version [version-span] Defines the PHP version requirements of this extension.
Syntax is the same as for “TYPO3_version”, see above.

module list of strings If any subfolders to an extension contains backend modules, those foldernames should be
listed here. It allows the EM to know about the existence of the module, which is important
because the EM has to update the conf.php file of the module in order to set the correct
TYPO3_MOD_PATH constant.

state string Which state is the extension in?

• alpha
Alpha state is used for very initial work, basically the state is has during the very process
of creating its foundation.

• beta
Under current development. Beta extensions are functional but not complete in
functionality. Most likely beta-extensions will not be reviewed.

• stable
Stable extensions are complete, mature and ready for production environment. You will
be approached for a review. Authors of stable extensions carry a responsibility to be
maintain and improve them.

• experimental
Experimental state is useful for anything experimental - of course. Nobody knows if this
is going anywhere yet... Maybe still just an idea.

• test
Test extension, demonstrates concepts etc.

• obsolete
The extension is obsolete or depricated. This can be due to other extensions solving the
same problem but in a better way or if the extension is not being maintained anymore.

internal boolean This flag indicates that the core source code is specifically aware of the extension. In other
words this flag should convey the message that “this extension could not be written
independently of core source code modifications”.
An extension is not internal just because it uses TYPO3 general classes eg. those from
t3lib/.
True non-internal extensions are characterized by the fact that they could be written without
making core source code changes, but relies only on existing classes in TYPO3 and/or
other extensions, plus its own scripts in the extension folder.

uploadfolder boolean If set, then the folder named “uploads/tx_[extKey-with-no-underscore]” should be present!

createDirs list of strings Comma list of directories to create upon extension installation.

modify_tables list of tables List of table names which are only modified - not fully created - by this extension. Tables
from this list found in the ext_tables.sql file of the extension

TYPO3 Core APIs - 10

Key Data type Description
lockType char; L, G or S Locks the extension to be installed in a specific position of the three posible:

• L = local (typo3conf/ext/)
• G = global (typo3/ext/)
• S = system (typo3/sysext/)

clearCacheOnLoad boolean If set, the EM will request the cache to be cleared when this extension is loaded.

author string Author name (Use a-z)

author_email email address Author email address

author_company string Author company (if any company sponsors the extension).

CGLcompliance keyword Compliance level that the extension claim to adhere to. A compliance defines certain coding
guidelines, level of documentation, technical requirements (like XHTML, DBAL usage etc).

Possible values are:
• CGL360

Please see the Project Coding Guidelines for a description of each compliance keyword (and
the full allowed list).

CGLcompliance_note string Any remarks to the compliance status. Might describe some minor incompatibilities or other
reservations.

private boolean If set, this version of the extension is not included in the public list!

(Not supported anymore)

download_password string If set, this password must additionally be specified if people want to access (import or see
details for) this the extension.

(Not supported anymore)

version main.sub.dev Version of the extension. Automatically managed by EM / TER. Format is [int].[int].[int]

Extending “extensions-classes”
A rather exotic thing to do but nevertheless...

If you are programming extensions yourself you should as a standard procedure include the “class extension code” in the
bottom of the class file:
if (defined("TYPO3_MODE") && $TYPO3_CONF_VARS[TYPO3_MODE]["XCLASS"]
["ext/class.cool_shop.php"]) {

include_once($TYPO3_CONF_VARS[TYPO3_MODE]["XCLASS"]["ext/class.cool_shop.php"]);
}

Normally the key used as example here (“ext/class.cool_shop.php”) would be the full path to the script relative to the
PATH_site constant. However because modules are required to work from both typo3/sysext/, typo3/ext/ and typo3conf/ext/
it is policy that any path before “ext/” is omitted.

The Extension Manager (EM)
Extensions are managed from the Extension Manager inside TYPO3 by "admin" users. The module is located at "Tools > Ext
Manager" and offers a menu with options to see loaded extensions (those that are installed or activated), available
extensions on the server and the possibility to import extensions from online resources, typically TER (TYPO3 Extension
Repository) which is at TYPO3.org.

The interface looks like this for the list of available extensions:

TYPO3 Core APIs - 11

The interface is really easy to use. You just click the +/- icon to the left of an extension in order to install it.

Basic framework for a new extension
This document will not describe into details how to create extensions. It only aims to be a reference for the facts regarding the
rules of how extensions register with the system.

To learn to create extensions you should read one of the extension tutorials that are available. They will take you through the
process step by step and explain best-practices for you.

To start up a new extension the most popular tool is the Extension Kickstarter Wizard. From a series of menus it allows you to
configure a basic set of features you want to get into your extension and a selection of default files will be created. The idea
is that you continue to develop these files into your specific application.

Registering an extension key
Before starting a new extension you should register an extension key on TYPO3.org (unless you plan to make an
implementation specific extension of course which does not make sense to share).

Go to TYPO3.org, log in with your (pre-created) username / password and enter http://typo3.org/extensions/register-
extension-keys/. In the bottom of the page you can enter the key name you want to register.

TYPO3 Core APIs - 12

Enabling the Kickstarter Wizard (KS)
Before you can use the Kickstarter Wizard you will have to enable it. The "Kickstarter" is an extension like everything else
(key: "extrep_wizard") so it must be installed first:

After the installation of the extension you will find a new menu item named "Make new extension" in the selector box menu of
the Extension Manager.

Using the Kickstarter Wizard
In the Kickstarter you should always fill in the General Information which includes the title, description, author name etc for
the extension. But the most important thing is to enter the extension key as the very first thing!

After entering this information you can begin to create new tables and fields in the database, you can configure backend
modules and frontend plugins etc. Basically this is what tutorials will cover in detail.

When you are through with the configuration you click the button to the left called "View result". This will let you preview the
content of the files the Kickstarter will write to the server.

TYPO3 Core APIs - 13

It is important that you write the extension to the correct location. Most likely that will be "Local" in your case.

Finally, if there already is an extension with the same extension key every file from that extension will be overwritten with the
Kickstarters output! Remember: This is a kickstarter, not an editor! It is meant to kick you off with your new TYPO3 extension
and nothing more! So of course it overwrites all existing files!

Enabling your newly created extension
After the extension is written to the servers harddisk you should see a message like this. Immediately you can now install the
extension:

TYPO3 Core APIs - 14

Re-edit the extension
In the process of creating an extension is it rather typical to go back to the Kickstarter a few times to fine tune to base code.
Experience suggests that this is especially useful to tuning the configuration of database tables and fields.

If you want to load the Kickstarter with the original configuration used for your extension so you can add or edit features, just
click the extension title in the list of loaded/available extensions and select "Backup/Delete" from the menu:

Clicking the "Start new" button will bring you back to the Kickstarter with all the original configuration used (configuration
loaded from "doc/wizard_form.dat" which must still exist).

Warning about re-editing
It is potentially dangerous to introduce this feature because it may leave you with the wrong impression of the Kickstarter. It is
still not an editor for your extensions! Whatever custom changes that has been made to the scripts of your new extension will
be overwritten when you write back the extension from the Kickstarter.

A good workflow for using the Kickstarter turns out to be this:

● Start by setting up all the features you need for your extension and write it with the Kickstarter.

● Begin to fill in dummy information in the database tables your extension contain. You will most likely find that you forgot
something or misconfigured a database field. Since you have not yet done any changes to the files in the extension you
can safely re-load the extension configuration (see above) and add the missing fields or whatever. Your dummy database
content will not be affected by this operation.

● When you have tested that your database configuration works for your purpose you can begin to edit the PHP-scripts by
hand (fx. programming the extension plugin). This is the "point-of-no-return" where you cannot safely return to the
Kickstarter because you have now changed scripts manually.

TYPO3 Core APIs - 15

TYPO3 API overview

Introduction

The source is the documentation!

(General wisdom)

The TYPO3 APIs are first and foremost documented inside of the source scripts. It would be impossible to maintain
documentation at more than one location given the fact that things change and sometimes fast.

Inline documentation
We have dedicated ourselves to document the classes and methods inside the source scripts (JavaDoc style). This means
that you can use any JavaDoc compliant documentor programme to extract API documentation from the source. You can also
install the extension "extdeveval" which will offer you a menu with links to the most important APIs in TYPO3 from within
TYPO3:

Clicking a link like "extMgm" will bring up a new window with the full API of that class:

TYPO3 Core APIs - 16

Pointers in the right direction
The point of this documentation is to help you understand which parts of the API is particularly important or useful for your
TYPO3 hacking. The next pages will highlight functions and classes which you should make yourself familiar with.

General functions
There are a few core classes in TYPO3 which contain general functionality. These classes are (typically) just a collection of
individual functions you call non-instantiated, like [class name]::[method name].

These are the most important classes to know about in TYPO3:

Class name: Description: Usage:
t3lib_DB Database Abstraction Base API

All access to the database must go through this object. That is the first step
towards DBAL compliance in your code. The class contains MySQL wrapper
functions which can almost be search/replaced with your existing calls.

$GLOBALS['TYPO3_DB'] in
both frontend and backend

t3lib_cs Character Set handling API
Contains native PHP code to handle character set conversion based on
charset tables from Unicode.org. It is not certain that you will have to use this
class directly but if you need to do charset conversion at any time you should
use this class.

In backend, $GLOBALS
['LANG']->csConvObj
In frontend, $GLOBALS
['TSFE']->csConvObj

t3lib_div General Purpose Functions
A collection of multi-purpose PHP functions. Some are TYPO3 specific but not
all.

t3lib_div::
(Non-instantiated!)

TYPO3 Core APIs - 17

Class name: Description: Usage:
t3lib_BEfunc Backend Specific Functions

Contains functions specific for the backend of TYPO3. You will typically need
these when programming backend modules or other backend functionality.
This class is NOT available in the frontend!

t3lib_BEfunc::
(Non-instantiated!)

t3lib_extMgm Extension API functions
Functions for extensions to interface with the core system. Many of these
functions are used in ext_localconf.php and ext_tables.php files of extensions.
They let extensions register their features with the system.
See extension programming tutorials for more details.

t3lib_extMgm::
(Non-instantiated!)

t3lib_iconWorks Icons / Part of skinning API
Contains a few functions for getting the right icon for a database table record
or the skinned version of any other icon.
This class is NOT available in the frontend!

t3lib_iconWorks::
(Non-instantiated!)

template Backend Template Class
Contains functions for producing the layout of backend modules, setting up
HTML headers, wrapping JavaScript sections correctly for XHTML etc.

$GLOBALS
['TBE_TEMPLATE'] or
$GLOBALS['SOBE'] or
$this->doc (inside of Script
Classes)

These classes are always included and available in the TYPO3 backend and frontend (except "t3lib_BEfunc" and
"t3lib_iconWorks").

The following pages will list methods from these classes in priority of importance. You should at least acquaint yourself with
all High-priority functions since these are a part of the Coding Guidelines requirements. In addition you might like to know
about other functions which are very often used since they might be very helpful to you (they were to others!).

High priority functions (CGL requirements)
The functions listed in this table is of high priority. Generally they provide APIs to functionality which TYPO3 should always
handle in the same way. This will help you to code TYPO3 applications with less bugs and greater compatibility with various
system conditions it will run under.

Remember, this list only serves to point out important functions! The real documentation is found in the source scripts. The
comments given is only a supplement to that.

Function Comments
t3lib_div::_GP
t3lib_div::_GET
t3lib_div::_POST

Getting values from GET or POST vars

APIs for getting values in GET or POST variables with slashes stripped regardless of PHP
environment. Always use these functions instead of direct access to $_GET, $_POST or
$HTTP_GET_VARS/$HTTP_POST_VARS.

t3lib_div::_GP($varname) will give you the value of either the GET or POST variable with priority to
POST if present. This is useful if you don't know whether a parameter is passed as GET or POST.
Many scripts will use this function to read variables in the init function:

 // Setting GPvars:
$this->file = t3lib_div::_GP('file');
$this->size = t3lib_div::_GP('size');

t3lib_div::_GET() will give you GET vars. For security reasons you should use this if you know your
parameters are passed as GET variables. This example gives you the whole $_GET array:

$params = t3lib_div::_GET();

t3lib_div::POST() will give you POST variables. Works like t3lib_div::_GET(). For security reasons you
should use this if you know your parameters are passed as POST variables.
This example gives you the content of the POST variable TSFE_ADMIN_PANEL, for instance it could
come from a form field like "<input name="TSFE_ADMIN_PANEL[command]"/>

$input = t3lib_div::_POST('TSFE_ADMIN_PANEL');

TYPO3 Core APIs - 18

Function Comments
t3lib_div::makeInstance
t3lib_div::makeInstanceClassNam
e

Creating objects

Factory APIs for creating an object instance of a class name (or getting the correct class name to
instantiate). These functions make sure the "XCLASS extension" principle can be used on (almost)
any class in TYPO3. You must use either of these functions for creating objects in TYPO3.

Examples:

// Making an instance of class "t3lib_TSparser":
$parseObj = t3lib_div::makeInstance('t3lib_TSparser');
// Make an object with an argument passed to the constructor:
$className=t3lib_div::makeInstanceClassName("t3lib_xml");
$xmlObj = new $className("typo3_export");

t3lib_div::getIndpEnv Environment-safe server and environment variables.

API function for delivery of system and environment variables on any web-server brand and server
OS. Always use this API instead of $_ENV/$_SERVER or getenv() if possible.

Examples:

if (t3lib_div::getIndpEnv('HTTP_ACCEPT_LANGUAGE') == $test)...
if (t3lib_div::cmpIP(t3lib_div::getIndpEnv('REMOTE_ADDR'), $pcs[1]))...
$prefix = t3lib_div::getIndpEnv('TYPO3_REQUEST_URL');
$redirectTo = t3lib_div::getIndpEnv('TYPO3_SITE_URL').$redirectTo;
if (!t3lib_div::getIndpEnv('TYPO3_SSL')) ...

t3lib_div::loadTCA Loading full table description into $TCA

If you want to access or change any part of the $TCA array for a table except the ['ctrl'] part then you
should call this function first. The $TCA might not contain the full configuration for the table (depending
on configuration of the table) and to make sure it is loaded if it isn't already you call this function.

Examples of PHP code which traverses the ['columns'] part of an unknown table and loads the table
before.

t3lib_div::loadTCA($this->table);
reset($TCA[$this->table]["columns"]);
while(list($fN)=each($TCA[$this->table]["columns"])) {
 $fieldListArr[]=$fN;
}

t3lib_BEfunc::deleteClause Get SQL WHERE-clause filtering "deleted" records

Tables from $TCA might be configured to set an integer flag when deleted instead of being physically
deleted from the database. In any case records with the deleted-flag set must never be selected in
TYPO3. To make sure you never make that mistake always call this function which will pass you a
SQL WHERE-clause like " AND deleted=0" if the table given as argument has been configured with a
deleted-field.
(Notice: In the frontend this is build into the "enableFields()" function.)

Example:

$res = $GLOBALS['TYPO3_DB']->exec_SELECTquery(
 'pid,uid,title,TSconfig,is_siteroot,storage_pid',
 'pages',
 'uid='.intval($uid).' '.
 t3lib_BEfunc::deleteClause('pages').' '.
 $clause
);

t3lib_extMgm::isLoaded Returns true if an extension is loaded (installed)

If you need to check if an extension is loaded in a TYPO3 installation simply use this function to ask
for that.

Example:

 // If the extension "sys_note" is loaded, then...
if (t3lib_extMgm::isLoaded('sys_note')) ...
 // If the "cms" extension is NOT loaded, return false
if (!t3lib_extMgm::isLoaded('cms')) return;
 // Check if the "indexed_search" extension is loaded. If not, exit PHP!
t3lib_extMgm::isLoaded("indexed_search",1);
 // Assign value "popup" if extension "tsconfig_help" is loaded
$type = t3lib_extMgm::isLoaded('tsconfig_help')?'popup':'';

TYPO3 Core APIs - 19

Function Comments
t3lib_extMgm::extPath
t3lib_extMgm::extRelPath
t3lib_extMgm::siteRelPath

Get file path to an extension directory

If you need to get the absolute or relative filepaths to an extension you should use these functions.
Extension can be located in three different positions in the filesystem whether they are local, global or
system extensions. These functions will always give you the right path.

Examples:
 // Include a PHP file from the extension "extrep_wizard".
 // t3lib_extMgm::extPath() returns the absolute path to the
 // extension directory.
require_once(
 t3lib_extMgm::extPath('extrep_wizard').
 'pi/class.tx_extrepwizard.php'
);
 // Get relative path (relative to PATH_typo3) to an icon (backend)
$icon = t3lib_extMgm::extRelPath("tt_rating")."rating.gif";
 // Get relative path (relative to PATH_site) to an icon (frontend)
return '<img src="'.
 t3lib_extMgm::siteRelPath("indexed_search").'pi/res/locked.gif"
 ... />';

t3lib_div::getFileAbsFileName
t3lib_div::validPathStr
t3lib_div::isAbsPath
t3lib_div::isAllowedAbsPath
t3lib_div::fixWindowsFilePath

Evaluate files and directories for security reasons

When you allow references to files to be inputted from users there is always the risk that they try to
cheat the system to include something else than intended. These functions makes it easy for you to
evaluate filenames for validity before reading, writing or including them.

Here the functions are described in order of importance:

t3lib_div::getFileAbsFileName() - Returns the absolute filename of a relative reference, resolves the
"EXT:" prefix (way of referring to files inside extensions) and checks that the file is inside the
PATH_site of the TYPO3 installation and implies a check with t3lib_div::validPathStr(). Returns false if
checks failed. Does not check if the file exists.

 // Getting absolute path of a temporary file:
$cacheFile = t3lib_div::getFileAbsFileName('typo3temp/tempfile.tmp');
 // Include file if it exists:
$file = t3lib_div::getFileAbsFileName($fileRef);
if (@is_file($file)) {
 include($file);
}

t3lib_div::validPathStr() - Checks for malicious file paths. Returns true if no '//', '..' or '\' is in the
$theFile. This should make sure that the path is not pointing 'backwards' and further doesn't contain
double/back slashes.

 // If the path is true and validates as a valid path string:
if ($path && t3lib_div::validPathStr($path)) ...

t3lib_div::isAbsPath() - Checks if the input path is absolute or relative (detecting either '/' or 'x:/' as
first part of string) and returns true if so.

 // Returns relative filename for icon:
if (t3lib_div::isAbsPath($Ifilename)) {
 $Ifilename = '../'.substr($Ifilename,strlen(PATH_site));
}

t3lib_div::isAllowedAbsPath() - Returns true if the path is absolute, without backpath '..' and within
the PATH_site OR within the lockRootPath. Contrary to t3lib_div::getFileAbsFileName() this function
can also validate files in filemounts outside the web-root of the installation, but this is rarely used!

if (@file_exists($path) && t3lib_div::isAllowedAbsPath($path)) {
 $fI = pathinfo($path);

t3lib_div::fixWindowsFilePath() - Fixes a path for Windows-backslashes and reduces double-
slashes to single slashes

TYPO3 Core APIs - 20

Function Comments
t3lib_div::mkdir Creates directory

One would think that creating directories is one thing you can do directly with PHP. Well, it turns out to
be quite error-prone if it should be compatible with Windows servers and safe-mode at the same time.
So TYPO3 offers a substitution function you should always use.

Example:

$root.=$dirParts.'/';
if (!is_dir($extDirPath.$root)) {
 t3lib_div::mkdir($extDirPath.$root);
 if (!@is_dir($extDirPath.$root)) {
 return 'Error: The directory "'.
 $extDirPath.$root.
 '" could not be created...';
 }
}

t3lib_div::upload_to_tempfile
t3lib_div::unlink_tempfile
t3lib_div::tempnam

Functions for handling uploads and temporary files

You need to use these functions for managing uploaded files you want to access as well as creating
temporary files within the same session. These functions are safe_mode and open_basedir
compatible which is the main point of you using them!

t3lib_div::upload_to_tempfile() - Will move an uploaded file (normally in "/tmp/xxxxx") to a temporary
filename in PATH_site."typo3temp/" from where TYPO3 can use it under safe_mode. Remember to
use t3lib_div::unlink_tempfile() afterwards - otherwise temp-files will build up! They are not
automatically deleted in PATH_site."typo3temp/"!

t3lib_div::unlink_tempfile() - Deletes (unlink) a temporary filename in 'PATH_site."typo3temp/"' given
as input. The function will check that the file exists, is in PATH_site."typo3temp/" and does not contain
back-spaces ("../") so it should be pretty safe. Use this after upload_to_tempfile() or tempnam() from
this class!

This example shows how to handle an uploaded file you just want to read and then delete again:

 // Read uploaded file:
$uploadedTempFile = t3lib_div::upload_to_tempfile(
 $GLOBALS['HTTP_POST_FILES']['upload_ext_file']['tmp_name']
);
$fileContent = t3lib_div::getUrl($uploadedTempFile);
t3lib_div::unlink_tempfile($uploadedTempFile);

t3lib_div::tempnam() - Create temporary filename (creates file with unique file name). This function
should be used for getting temporary filenames - will make your applications safe for "open_basedir =
on". Remember to delete the temporary files after use! This is done by t3lib_div::unlink_tempfile()
In the following example it is shown how two temporary filenames are created for being processed
with an external program (diff) after which they are deleted again:

 // Create file 1 and write string
$file1 = t3lib_div::tempnam('diff1_');
t3lib_div::writeFile($file1,$str1);
 // Create file 2 and write string
$file2 = t3lib_div::tempnam('diff2_');
t3lib_div::writeFile($file2,$str2);
 // Perform diff.
$cmd = $GLOBALS['TYPO3_CONF_VARS']['BE']['diff_path'].
 ' '.$this->diffOptions.' '.$file1.' '.$file2;
exec($cmd,$res);
unlink($file1);
unlink($file2);

t3lib_div::fixed_lgd_cs Truncating a string for visual display, observing the character set (backend only)

This function allows you to truncate a string from eg. "Hello World" to "Hello Wo..." so for example very
long titles of records etc. will not break the visual appearance of your backend modules.
Since text strings cannot be cropped at any byte if the character set is utf-8 or another multibyte
charset this function will process the string assuming the character set to be the one used in the
backend.
It is recommended to use $BE_USER->uc['titleLen'] for the length parameter.

 // Limits Record title to 30 chars
t3lib_div::fixed_lgd_cs($thisRecTitle,30);
 // Limits string to title-length configured for backend user:
$title = t3lib_div::fixed_lgd_cs(
 $row['title'],
 $this->BE_USER->uc['titleLen']
);

TYPO3 Core APIs - 21

Function Comments
t3lib_div::formatForTextarea Preparing a string for output between <textarea> tags.

Use this function to prepare content for <textarea> tags. Then you will avoid extra / stripped
whitespace when the form is submitted multiple times.

 // Create item:
$item = '
 <textarea>'.
 t3lib_div::formatForTextarea($value).
 '</textarea>';

t3lib_div::locationHeaderUrl Preparing a URL for a HTTP location-header

Use this to prepare redirection URLs for location-headers. It will convert the URL to be absolute. This
is needed for some webservers (Windows) while unix servers will work fine without. So to honor
compatibility, use this function like this:

Header('Location: '.t3lib_div::locationHeaderUrl($this->retUrl));
exit;

TYPO3 Core APIs - 22

Function Comments
t3lib_BEfunc::getFuncMenu
t3lib_BEfunc::getFuncCheck

Create "Function menu" in backend modules

Creates a selector box menu or checkbox with states automatically saved in the backend user
session. Such a function menu could look like this:

The selector box is made by this function call. It sets the ID variable (zero if not available), the GET
var name, "SET[mode]", the current value from MOD_SETTINGS and finally the array of menu
options, MOD_MENU['mode']:

t3lib_BEfunc::getFuncMenu(
 $this->id,
 'SET[mode]',
 $this->MOD_SETTINGS['mode'],
 $this->MOD_MENU['mode']
)

Prior to making the menu it is required that the MOD_MENU array is set up with an array of options.
This could look like this (getting some labels from the "locallang" system). In addition the incoming
"SET" GET-variable must be registered in the session which is also done in this listing:

$this->MOD_MENU = array(
 'mode' => array(
 0 => $LANG->getLL('user_overview'),
 'perms' => $LANG->getLL('permissions')
)
);
 // Clean up settings:
$this->MOD_SETTINGS = t3lib_BEfunc::getModuleData(
 $this->MOD_MENU,
 t3lib_div::_GP('SET'),
 $this->MCONF['name']
);

You can have a checkbox as well:

Then the function call looks like this. Notice the fourth argument is gone because a checkbox does not
have any information about options like a selector box would have.

t3lib_BEfunc::getFuncCheck(
 0,
 'SET[own_member_only]',
 $this->MOD_SETTINGS['own_member_only']
);

For checkboxes you must set the key in the MOD_MENU array as well. Otherwise the values are not
registered in the user session:

'own_member_only' => '',
t3lib_BEfunc::editOnClick Create onclick-JavaScript code that links to edit form for a record

Use this function to create a link to the "alt_doc.php" core script which can generate editing forms for
any $TCA configured record. The actual editing command is passed to "alt_doc.php" through the GET
parameter "&edit".
See the section with "Various examples" for detailed examples of this!

Example:

$params='&edit[pages]['.$row['uid'].']=edit';
$link = '<a href="#" onclick="'.
 htmlspecialchars(t3lib_BEfunc::editOnClick($params,'',-1)).
 '">Edit';

TYPO3 Core APIs - 23

Function Comments
t3lib_BEfunc::viewOnClick Create onclick-JavaScript code that opens a page in the frontend

It will detect the correct domain name if needed and provide the link with the right back path. Also it
will re-use any window already open.

 // "View page" link is added:
$link = '<a href="#" onclick="'.
 htmlspecialchars(t3lib_BEfunc::viewOnClick(
 $pageId,
 $GLOBALS['BACK_PATH'],
 t3lib_BEfunc::BEgetRootLine($pageId)
)).'">View page';

$GLOBALS['TBE_TEMPLATE']->
issueCommand

Creates a link to "tce_db.php" (with a command like copy, move,delete for records)

Creates a URL to the TYPO3 Core Engine interface provided from the core script, "tce_db.php". The
$params array is filled with date or cmd values. For detailed list of options see section about TCE
elsewhere in this document.

Example:

 // Delete
$params = '&cmd[tt_content]['.$row['uid'].'][delete]=1';
$out.= '<a href="'.
 htmlspecialchars($GLOBALS['SOBE']->doc->issueCommand($params)).
 '" onclick="'.
 htmlspecialchars("return confirm('Want to delete?');").
 '">Delete record';

t3lib_BEfunc::helpTextIcon
t3lib_BEfunc::helpText
t3lib_BEfunc::cshItem

Create icon or short description for Context Sensitive Help (CSH)

You are encouraged to integrate Content Sensitive help in your backend modules and for your
database tables. This will help users to use TYPO3 and your TYPO3 applications more easily.
With these functions you can create content sensitive help texts (and links to more details) like this:

(Note: For the short description to be displayed and not only the icon the user must set up "Field help
mode" in the User>Setup module to "Display full text message".)

Examples:

 // Setting "table name" to module name with prefix
$tableIdent = '_MOD_'.$this->MCONF['name'];
 // Creating CSH icon and short description:
$HTMLcode.=
 t3lib_BEfunc::helpTextIcon($tableIdent,'quickEdit',$BACK_PATH).
 t3lib_BEfunc::helpText($tableIdent,'quickEdit',$BACK_PATH).
 '
';

Prior to calling helpTextIcon and helpText you might need to load the description table with:

if ($BE_USER->uc['edit_showFieldHelp']) {
 $LANG->loadSingleTableDescription($tableIdent);
}

Alternatively you can use t3lib_BEfunc::cshItem(). It's a quicker way of integrating the descriptions
since description files are loaded automatically and the text/icon mode is integrated in a single function
call. This is recommended for sporadic usage:

$HTMLcode.=
t3lib_BEfunc::cshItem($tableIdent,'quickEdit',$BACK_PATH);

TYPO3 Core APIs - 24

Function Comments
t3lib_iconWorks::getIconImage
t3lib_iconWorks::getIcon

Getting correct icon for database table record

Always use these functions if you need to get the icon for a record. Works only for records from tables
which are defined in $TCA

 // Getting default icon for the "tt_content" table:
t3lib_iconWorks::getIconImage('tt_content',array(),$this->backPath,'');
 // Getting an icon where record content may define the look:
$icon = t3lib_iconWorks::getIconImage(
 $this->table,
 $row,
 $this->backPath,
 'align="top" class="c-recIcon"'
);
 // Getting the icon filename only:
$ficon = t3lib_iconWorks::getIcon($table,$row);

t3lib_iconWorks::skinImg Processing icons for skin API

Pass the filename and width/height attributes of all images you use in your backend applications
through this function. See Skin API description for more details.

$skin_enabled_icon = '<img'.
 t3lib_iconWorks::skinImg(
 $this->doc->backPath,
 'gfx/recordlock_warning3.gif',
 'width="17" height="12"'
).
 ' alt="" />';

TYPO3 Core APIs - 25

Function Comments
$GLOBALS['TYPO3_DB']->
exec_INSERTquery
exec_UPDATEquery
exec_DELETEquery
exec_SELECTquery

Database Access API

To be compatible with Database Abstraction Layers you should always use the global object
$TYPO3_DB for database access. The class "t3lib_db" contains a list of MySQL wrapper functions
(sql(), sql_fetch_assoc(), etc...) which you can use almost out of the box as a start. Just
search/replace.
But it is recommended that you port your application to using the four execution functions directly.
These will both build the query for you and execute it.
See the Coding Guidelines, t3lib_db API and Inside TYPO3 document for more information.

Inserting a record:
Just fill an array with "fieldname => value" pairs and pass it to exec_INSERTquery() along with the
table name in which it should be inserted:

$insertFields = array(
 'md5hash' => $md5,
 'tstamp' => time(),
 'type' => 2,
 'params' => $inUrl
);
$GLOBALS['TYPO3_DB']->exec_INSERTquery(
 'cache_md5params',
 $insertFields
);

Updating a record:
Create an array of "fieldname => value" pairs before calling exec_UPDATEquery(). The function call is
almost like inserting, but you need to add a WHERE clause to target the update to the record you want
to update. It is the second argument you set to a value like "uid=???".

$fields_values = array(
 'title' => $data['sys_todos'][$key]['title'],
 'deadline' => $data['sys_todos'][$key]['deadline'],
 'description' => $data['sys_todos'][$key]['description'],
 'tstamp' => time()
);
$GLOBALS['TYPO3_DB']->exec_UPDATEquery(
 'sys_todos',
 'uid='.intval($key),
 $fields_values
);

Deleting a record:
Call exec_DELETEquery() with the tablename and the WHERE clause selecting the record to delete:

$GLOBALS['TYPO3_DB']->exec_DELETEquery(
 'sys_todos',
 'uid='.intval($key)
);

Selecting a record:
Call exec_SELECTquery() with at least the first three arguments (field list to select, table name and
WHERE clause). The return value is a result pointer (or object) which should be passed to
->sql_fetch_assoc() in a loop in order to traverse the result rows.

$res = $GLOBALS['TYPO3_DB']->exec_SELECTquery(
 '*',
 $theTable,
 $theField.'="'.
 $GLOBALS['TYPO3_DB']->quoteStr($theValue, $theTable).'"'.
 $this->deleteClause($theTable).' '.
 $whereClause,
 $groupBy,
 $orderBy,
 $limit
);
$rows = array();
while($row = $GLOBALS['TYPO3_DB']->sql_fetch_assoc($res)) {
 $rows[] = $row;
}
$GLOBALS['TYPO3_DB']->sql_free_result($res);
if (count($rows)) return $rows;

$GLOBALS['BE_USER']->
isAdmin

Return true if current backend user is "admin"

Use this if you need to restrict a user from doing something unless he is "admin".

$GLOBALS['BE_USER']->
getPagePermsClause

Return WHERE clause for filtering pages which permission mismatch for current user

The most typical usage of this is to call the function with the value "1". Then the WHERE clause
returned will filter away all pages to which the user has no read-access.

TYPO3 Core APIs - 26

TYPO3 Coding Guidelines
You should also refer to the TYPO3 Coding Guidelines (CGL) document which is the authoritative source to know about
which coding practices are required for TYPO3 core and extension programming. That document also mentions the most
important API calls that you have to use and gives further insights.

Functions typically used and nice to know
These functions are generally just nice to know. They provide functionality which you will often need in TYPO3 applications
and therefore they will save you time and make your applications easier for others to understand as well since you use
commonly known functions.

Please take time to learn these functions!

Function Comments
t3lib_div::inList Check if an item exists in a comma-separated list of items.

if (t3lib_div::inList('gif,jpg,png',$ext)) {
t3lib_div::intInRange Forces the input variable (integer) into the boundaries of $min and $max.

t3lib_div::intInRange($row['priority'],1,5);
t3lib_div::isFirstPartOfStr Returns true if the first part of input string matches the second argument.

t3lib_div::isFirstPartOfStr($path,PATH_site);
t3lib_div::testInt Tests if the input is an integer.

t3lib_div::shortMD5
t3lib_div::md5int

Creates partial/truncated MD5 hashes. Useful when a 32 byte hash is too long or you rather work with
an integer than a string.

t3lib_div::shortMD5() - Creates a 10 byte short MD5 hash of input string

$addQueryParams.= '&cHash='.t3lib_div::shortMD5(serialize($pA));

t3lib_div::md5int() - Creates an integer from the first 7 hex chars of the MD5 hash string

'mpvar_hash' => t3lib_div::md5int($GLOBALS['TSFE']->MP),
t3lib_div::deHSCentities
t3lib_div::htmlspecialchars_decode

Reverse conversions of htmlspecialchars()

t3lib_div::deHSCentities() - Re-converts HTML entities if they have been converted by
htmlspecialchars(). For instance "&amp;" which should stay "&". Or "&#1234;" to
"Ӓ". Or "&#x1b;" to ""

$value = t3lib_div::deHSCentities(htmlspecialchars($value));

t3lib_div::htmlspecialchars_decode() - Inverse version of htmlspecialchars()

t3lib_div::modifyHTMLColor
t3lib_div::modifyHTMLColorAll

Modifies the RGB values of an 6-digit HTML hex color by adding/subtracting. Useful for increasing or
decreasing brightness of colors.

t3lib_div::modifyHTMLColor('#cca823',+10,+10,+10)
t3lib_div::modifyHTMLColorAll($this->doc->bgColor,-20);

t3lib_div::formatSize Formats a number of bytes as Kb/Mb/Gb for visual output.

$size = ' ('.t3lib_div::formatSize(filesize($v)).'bytes)';
t3lib_div::validEmail Evaluates a string as an email address.

if ($email && t3lib_div::validEmail($email)) {

TYPO3 Core APIs - 27

Function Comments
t3lib_div::trimExplode
t3lib_div::intExplode
t3lib_div::revExplode

Various flavours of exploding a string by a token.

t3lib_div::trimExplode() - Explodes a string by a token and trims the whitespace away around each
item. Optionally any zero-length elements are removed. Very often used to explode strings from
configuration, user input etc. where whitespace can be expected between values but is insignificant.

array_unique(t3lib_div::trimExplode(',',$rawExtList,1));
t3lib_div::trimExplode(chr(10),$content);

t3lib_div::intExplode() - Explodes a by a token and converts each item to an integer value. Very
useful to force integer values out of a value list, for instance for an SQL query.

// Make integer list
implode(t3lib_div::intExplode(',',$row['subgroup']),',');

t3lib_div::revExplode() - Reverse explode() which allows you to explode a string into X parts but from
the back of the string instead.

$p=t3lib_div::revExplode('/',$path,2);
t3lib_div::array_merge_recursive_o
verrule
t3lib_div::array_merge

Merging arrays with fixes for "PHP-bugs"

t3lib_div::array_merge_recursive_overrule() - Merges two arrays recursively and "binary safe"
(integer keys are overridden as well), overruling similar the values in the first array ($arr0) with the
values of the second array ($arr1). In case of identical keys, ie. keeping the values of the second.

t3lib_div::array_merge() - An array_merge function where the keys are NOT renumbered as they
happen to be with the real php-array_merge function. It is "binary safe" in the sense that integer keys
are overridden as well.

t3lib_div::array2xml
t3lib_div::xml2array

Serialization of PHP variables into XML.

These functions are made to serialize and unserialize PHParrays to XML files. They are used for the
FlexForms content in TYPO3, Data Structure definitions etc. The XML output is optimized for
readability since associative keys are used as tagnames. This also means that only alphanumeric
characters are allowed in the tag names and only keys not starting with numbers (so watch your usage
of keys!). However there are options you can set to avoid this problem. Numeric keys are stored with
the default tagname "numIndex" but can be overridden to other formats). The function handles input
values from the PHP array in a binary-safe way; All characters below 32 (except 9,10,13) will trigger
the content to be converted to a base64-string. The PHP variable type of the data is preserved as long
as the types are strings, arrays, integers and booleans. Strings are the default type unless the "type"
attribute is set.

t3lib_div::array2xml() - Converts a PHP array into an XML string.

t3lib_div::array2xml($this->FORMCFG['c'],'',0,'T3FormWizard');

t3lib_div::xml2array() - Converts an XML string to a PHP array. This is the reverse function of
array2xml()

if ($this->xmlStorage) {
 $cfgArr = t3lib_div::xml2array($row[$this->P['field']]);
}

t3lib_div::getURL
t3lib_div::writeFile

Reading / Writing files

t3lib_div::getURL() - Reads the full content of a file or URL. Used throughout the TYPO3 sources.

$templateCode = t3lib_div::getURL($templateFile);

t3lib_div::writeFile() - Writes a string into an absolute filename.

t3lib_div::writeFile($extDirPath.$theFile,$fileData['content']);
t3lib_div::split_fileref Splits a reference to a file in 5 parts. Alternative to "path_info" and fixes some "PHP-bugs" which

makes page_info() unattractive at times.

TYPO3 Core APIs - 28

Function Comments
t3lib_div::get_dirs
t3lib_div::getFilesInDir
t3lib_div::getAllFilesAndFoldersInP
ath
t3lib_div::removePrefixPathFromLi
st

Read content of file system directories.

t3lib_div::get_dirs() - Returns an array with the names of folders in a specific path

if (@is_dir($path)) {
 $directories = t3lib_div::get_dirs($path);
 if (is_array($directories)) {
 foreach($directories as $dirName) {
 ...
 }
 }
}

t3lib_div::getFilesInDir() - Returns an array with the names of files in a specific path

$sFiles = t3lib_div::getFilesInDir(PATH_typo3conf,'',1,1);
$files = t3lib_div::getFilesInDir($dir,'png,jpg,gif');

t3lib_div::getAllFilesAndFoldersInPath() - Recursively gather all files and folders of a path.
t3lib_div::removePrefixPathFromList() - Removes the absolute part of all files/folders in fileArr
(useful for post processing of content from t3lib_div::getAllFilesAndFoldersInPath())

 // Get all files with absolute paths prefixed:
$fileList_abs =
 t3lib_div::getAllFilesAndFoldersInPath(array(),$absPath,'php,inc');
 // Traverse files and remove abs path from each (becomes relative)
$fileList_rel =
 t3lib_div::removePrefixPathFromList($fileList_abs,$absPath);

t3lib_div::implodeArrayForUrl Implodes a multidimentional array into GET-parameters (eg. ¶m[key][key2]=value2¶m[key]
[key3]=value3)

$pString = t3lib_div::implodeArrayForUrl('',$params);
t3lib_div::get_tag_attributes
t3lib_div::implodeAttributes

Works on HTML tag attributes

t3lib_div::get_tag_attributes() - Returns an array with all attributes of the input HTML tag as
key/value pairs. Attributes are only lowercase a-z

$attribs = t3lib_div::get_tag_attributes('<'.$subparts[0].'>');

t3lib_div::implodeAttributes() - Implodes attributes in the array $arr for an attribute list in eg. and
HTML tag (with quotes)

$tag = '';
t3lib_div::resolveBackPath Resolves "../" sections in the input path string. For example "fileadmin/directory/../other_directory/" will

be resolved to "fileadmin/other_directory/"

t3lib_div::callUserFunction
t3lib_div::getUserObj

General purpose functions for calling user functions (creating hooks).
See the chapter about Hooks in this document for detailed description of these functions.

t3lib_div::callUserFunction() - Calls a userdefined function/method in class. Such a function/method
should look like this: "function proc(&$params, &$ref) {...}"

function procItems($items,$iArray,$config,$table,$row,$field) {
 global $TCA;
 $params=array();
 $params['items'] = &$items;
 $params['config'] = $config;
 $params['TSconfig'] = $iArray;
 $params['table'] = $table;
 $params['row'] = $row;
 $params['field'] = $field;
 t3lib_div::callUserFunction(
 $config['itemsProcFunc'],
 $params,
 $this
);
 return $items;
}

t3lib_div::getUserObj() - Creates and returns reference to a user defined object.

$_procObj = &t3lib_div::getUserObj($_classRef);
$_procObj->pObj = &$this;
$value = $_procObj->transform_rte($value,$this);

TYPO3 Core APIs - 29

Function Comments
t3lib_div::linkThisScript Returns the URL to the current script. You can an array with associative keys corresponding to the

GET-vars you wish to add to the URL. If you set them empty, they will remove existing GET-vars from
the current URL.

t3lib_div::plainMailEncoded
t3lib_div::quoted_printable

Mail sending functions

t3lib_div::plainMailEncoded() - Simple substitute for the PHP function mail() which allows you to
specify encoding and character set.
t3lib_div::quoted_printable() - Implementation of quoted-printable encode.

t3lib_BEfunc::getRecord
t3lib_BEfunc::getRecordsByField

Functions for selecting records by uid or field value.

t3lib_BEfunc::getRecord() - Gets record with uid=$uid from $table

 // Getting array with title field from a page:
t3lib_BEfunc::getRecord('pages',intval($row['shortcut']),'title');
 // Getting a full record with permission WHERE clause
$pageinfo = t3lib_BEfunc::getRecord(
 'pages',
 $id,
 '*',
 ($perms_clause ? ' AND '.$perms_clause : '')
);

t3lib_BEfunc::getRecordsByField() - Returns records from table, $theTable, where a field
($theField) equals the value, $theValue

 // Checking if the id-parameter is an alias.
if (!t3lib_div::testInt($id)) {
 list($idPartR) =
 t3lib_BEfunc::getRecordsByField('pages','alias',$id);
 $id = intval($idPartR['uid']);
}

t3lib_BEfunc::getRecordPath Returns the path (visually) of a page $uid, fx. "/First page/Second page/Another subpage"

$label = t3lib_BEfunc::getRecordPath(
 intval($row['shortcut']),
 $perms_clause,
 20
);

t3lib_BEfunc::readPageAccess Returns a page record (of page with $id) with an extra field "_thePath" set to the record path if the
WHERE clause, $perms_clause, selects the record. Thus is works as an access check that returns a
page record if access was granted, otherwise not.

$perms_clause = $GLOBALS['BE_USER']->getPagePermsClause(1);
$pageinfo = t3lib_BEfunc::readPageAccess($id,$perms_clause);

t3lib_BEfunc::date
t3lib_BEfunc::datetime
t3lib_BEfunc::calcAge

Date/Time formatting functions using date/time format from TYPO3_CONF_VARS.

t3lib_BEfunc::date() - Returns $tstamp formatted as "ddmmyy" (According to $TYPO3_CONF_VARS
['SYS']['ddmmyy'])

t3lib_BEfunc::datetime($row["crdate"])

t3lib_BEfunc::datetime() - Returns $tstamp formatted as "ddmmyy hhmm" (According to
$TYPO3_CONF_VARS['SYS']['ddmmyy'] AND $TYPO3_CONF_VARS['SYS']['hhmm'])

t3lib_BEfunc::datetime($row["item_mtime"])

t3lib_BEfunc::calcAge() - Returns the "age" in minutes / hours / days / years of the number of
$seconds inputted.

$agePrefixes = ' min| hrs| days| yrs';
t3lib_BEfunc::calcAge(time()-$row['crdate'], $agePrefixes);

t3lib_BEfunc::titleAttribForPages Returns title-attribute information for a page-record informing about id, alias, doktype, hidden,
starttime, endtime, fe_group etc.

$out = t3lib_BEfunc::titleAttribForPages($row,'',0);
$out = t3lib_BEfunc::titleAttribForPages($row,'1=1 '.$this->clause,0);

TYPO3 Core APIs - 30

Function Comments
t3lib_BEfunc::thumbCode
t3lib_BEfunc::getThumbNail

Returns image tags for thumbnails

t3lib_BEfunc::thumbCode() - Returns a linked image-tag for thumbnail(s)/fileicons/truetype-font-
previews from a database row with a list of image files in a field. Slightly advanced. It's more likely you
will need t3lib_BEfunc::getThumbNail() to do the job.
t3lib_BEfunc::getThumbNail() - Returns single image tag to thumbnail using a thumbnail script (like
thumbs.php)

t3lib_BEfunc::getThumbNail(
 $this->doc->backPath.'thumbs.php',
 $filepath,
 'hspace="5" vspace="5" border="1"'
);

t3lib_BEfunc::storeHash
t3lib_BEfunc::getHash

Get/Set cache values.

t3lib_BEfunc::storeHash() - Stores the string value $data in the 'cache_hash' table with the hash
key, $hash, and visual/symbolic identification, $ident
t3lib_BEfunc::getHash() - Retrieves the string content stored with hash key, $hash, in cache_hash

Example of how both functions are used together; first getHash() to fetch any possible content and if
nothing was found how the content is generated and stored in the cache:

 // Parsing the user TS (or getting from cache)
$userTS = implode($TSdataArray,chr(10).'[GLOBAL]'.chr(10));
$hash = md5('pageTS:'.$userTS);
$cachedContent = t3lib_BEfunc::getHash($hash,0);
$TSconfig = array();
if (isset($cachedContent)) {
 $TSconfig = unserialize($cachedContent);
} else {
 $parseObj = t3lib_div::makeInstance('t3lib_TSparser');
 $parseObj->parse($userTS);
 $TSconfig = $parseObj->setup;
 t3lib_BEfunc::storeHash($hash,serialize($TSconfig),'IDENT');
}

t3lib_BEfunc::getRecordTitle
t3lib_BEfunc::getProcessedValue

Get processed / output prepared value from record

t3lib_BEfunc::getRecordTitle() - Returns the "title" value from the input records field content.

$line.= t3lib_BEfunc::getRecordTitle('tt_content',$row,1);

t3lib_BEfunc::getProcessedValue() - Returns a human readable output of a value from a record. For
instance a database record relation would be looked up to display the title-value of that record. A
checkbox with a "1" value would be "Yes", etc.

$outputValue = nl2br(
 htmlspecialchars(
 trim(
 t3lib_div::fixed_lgd_cs(
 t3lib_BEfunc::getProcessedValue(
 $table,
 $fieldName,
 $row[$fieldName]
),
 250
)
)
)
);

t3lib_BEfunc::getFileIcon Returns file icon name (from $FILEICONS) for the fileextension $ext

$fI = pathinfo($filePath);
$fileIcon = t3lib_BEfunc::getFileIcon(strtolower($fI['extension']));
$fileIcon = '<img'.
 t3lib_iconWorks::skinImg(
 $this->backPath,
 'gfx/fileicons/'.$fileIcon,
 'width="18" height="16"'
).' alt="" />';

t3lib_BEfunc::getPagesTSconfig Returns the Page TSconfig for page with id, $id.
This example shows how an object path, "mod.web_list" is extracted from the Page TSconfig for page
$id:

$modTSconfig = $GLOBALS["BE_USER"]->getTSConfig(
 "mod.web_list",
 t3lib_BEfunc::getPagesTSconfig($id)
);

TYPO3 Core APIs - 31

Function Comments
t3lib_extMgm::addTCAcolumns Adding fields to an existing table definition in $TCA

For usage in "ext_tables.php" files

 // tt_address modified
t3lib_div::loadTCA('tt_address');
t3lib_extMgm::addTCAcolumns('tt_address',array(
 'module_sys_dmail_category' =>
 Array('config'=>array('type'=>'passthrough')),
 'module_sys_dmail_html' =>
 Array('config'=>array('type'=>'passthrough'))
));

t3lib_extMgm::addToAllTCAtypes Makes fields visible in the TCEforms, adding them to the end of (all) "types"-configurations
For usage in "ext_tables.php" files

t3lib_extMgm::addToAllTCAtypes(
 "fe_users",
 "tx_myext_newfield;;;;1-1-1, tx_myext_another_field"
);

t3lib_extMgm::allowTableOnStand
ardPages

Add tablename to default list of allowed tables on pages (in $PAGES_TYPES)
For usage in "ext_tables.php" files

t3lib_extMgm::allowTableOnStandardPages('tt_board');
t3lib_extMgm::addModule Adds a module (main or sub) to the backend interface

For usage in "ext_tables.php" files

t3lib_extMgm::addModule(
 'user',
 'setup',
 'after:task',
 t3lib_extMgm::extPath($_EXTKEY).'mod/'
);
t3lib_extMgm::addModule(
 'tools',
 'txcoreunittestM1',
 '',
 t3lib_extMgm::extPath($_EXTKEY).'mod1/'
);

t3lib_extMgm::insertModuleFunctio
n

Adds a "Function menu module" ('third level module') to an existing function menu for some other
backend module
For usage in "ext_tables.php" files

t3lib_extMgm::insertModuleFunction(
 'web_func',
 'tx_cmsplaintextimport_webfunc',
 t3lib_extMgm::extPath($_EXTKEY).
 'class.tx_cmsplaintextimport_webfunc.php',
 'LLL:EXT:cms_plaintext_import/locallang.php:menu_1'
);

t3lib_extMgm::addPlugin Adds an entry to the list of plugins in content elements of type "Insert plugin"
For usage in "ext_tables.php" files

t3lib_extMgm::addPlugin(
 Array(
 'LLL:EXT:newloginbox/locallang_db.php:tt_content.list_type1',
 $_EXTKEY.'_pi1'
),
 'list_type'
);

t3lib_extMgm::addPItoST43 Add PlugIn to Static Template #43
When adding a frontend plugin you will have to add both an entry to the TCA definition of tt_content
table AND to the TypoScript template which must initiate the rendering. Since the static template with
uid 43 is the "content.default" and practically always used for rendering the content elements it's very
useful to have this function automatically adding the necessary TypoScript for calling your plugin. It
will also work for the extension "css_styled_content"

For usage in "ext_locallang.php" files

t3lib_extMgm::addPItoST43($_EXTKEY);

TYPO3 Core APIs - 32

TYPO3 Core Engine (TCE)
Introduction

Database
The TYPO3 Core Engine is the class that handles all data writing to database tables configured in $TCA. In addition the
class handles commands such as copy, move, delete. It will handle undo/history and versioning (future) of records as well
and everything will be logged to the sys_log. And it will make sure that write permissions are evaluated correctly for the user
trying to write to the database. Generally, any processing specific option in the $TCA array is handled by TCE.

Using TCE for manipulation of the database content in the TCA configured tables guarantees that the data integrity of TYPO3
is respected. This cannot be safely guaranteed if you write to $TCA configured database tables directly. It will also manage
the relations to files and other records.

TCE requires a backend login to work. This is due to the fact that permissions are observed (of course) and thus TCE needs
a backend user to evaluate against. This means you cannot use TCEmain from the frontend scope. Thus writing to tables
(such as a guestbook) will have to be done from the frontend without TCEmain.

The features of the $TCA (Table Configuration Array) array are discussed in the end of this document.

Files
TCE also has a part for handling files. The file operations are normally performed in the File > List module where you can
manage a directory on the server by copying, moving, deleting and editing files and directories. The file operations are
managed by two core classes, t3lib_basicFileFunc and t3lib_extFileFunc.

Database: t3lib_TCEmain basics
When you are using TCE from your backend applications you need to prepare two arrays of information which contain the
instructions to TCEmain of what actions to perform. They fall into two categories: Data and Commands.

"Data" is when you want to write information to a database table or create a new record.

"Commands" is when you want to move, copy or delete a record in the system.

The data and commands are created as multidimensional arrays and to understand the API of TCEmain you simply need to
understand the hierarchy of these two arrays.

Commands Array ($cmd):
Syntax:
$cmd[tablename][uid][command] = value

Description of keywords in syntax:

Key Data type Description
tablename string Name of the database table. Must be configured in $TCA array, otherwise it cannot be

processed.

uid integer The UID of the record that is manipulated. This is always an integer.

command string (command
keyword)

The command type you want to execute.

Notice: Only one command can be executed at a time for each record! The first command in
the array will be taken.

See table below for command keywords and values

value mixed The value for the command
See table below for command keywords and values

Command keywords and values:

Command Data type Value
copy integer The significance of the value depends on whether it is positive or negative:

● Positive value: The value points to a page UID. A copy of the record (and possibly child
elements/tree below) will be inserted inside that page as the first element.

● Negative value: The (absolute) value points to another record from the same table as the
record being copied. The new record will be inserted on the same page as that record and
if $TCA[...]['ctrl']['sortby'] is set, then it will be positioned after.

● Zero value: Record is inserted on tree root level

move integer Works like "copy" but moves the record instead of making a copy.

delete "1" Value should always be "1"
This action will delete the record (or mark the record "deleted" if configured in $TCA)

TYPO3 Core APIs - 33

Command Data type Value
localize integer Pointer to a “sys_language” uid to localize the record into. Basically a localization of a record

is making a copy of the record (possibly excluding certain fields defined with “l10n_mode”) but
changing relevant fields to point to the right sys language / original language record.

Requirements for a successful localization is this:
● [ctrl] options “languageField” and “transOrigPointerField” must be defined for the table
● A “sys_language” record with the given “sys_language_uid” must exist.
● The record to be localized by currently be set to “Default” language and not have any

value set for the “transOrigPointerField” either.
● There cannot exist another localization to the given language for the record (looking in the

original record PID).

Apart from this ordinary permissions apply as if the user wants to make a copy of the record
on the same page.

version array Versioning action.

Keys:
● [action] : Keyword determining the versioning action. Options are:

● “new” : Indicates that a new version of the record should be created.
● “swap” : Indicates that the current online version should be swapped with another.

● [treeLevels] : (For action “new” when record is a page). Integer, -1 to 4, indicating the
number of levels of the page tree to versionize together with a page. -1 means only the
page record gets versionized, 0 means the page + content (defined by ctrl-flag
“versioning_followPages”, 1+ means the number of sub levels to include.

● [label] : (For action “new”) For creating new versions this indicates the version label to
apply. If not given, a standard label including version number and date is added.

● [swapWith] : (For action “swap”) Indicates the uid of the record to swap current version
with!

● [swapContent] : (For action “swap” / pages) Indicates that PIDs of content records should
also be swapped after swapping the main record. This flag should be set if you want to
swap in the content of a page instead of the record only.
If the value of “swapContent” is “ALL” then also subpages of the page is swapped,
otherwise only records from other tables that are bound to the page versioning wise
(according to “versioning_followPages”)

Examples of Commands:
$cmd['tt_content'][54]['delete'] = 1; // Deletes tt_content record with uid=54
$cmd['pages'][1203]['copy'] = -303; //Copies page id=1203 to the position after page 303
$cmd['pages'][1203]['move'] = 303; // Moves page id=1203 to the first position in p. 303

Data Array ($data):
Syntax:
$data[tablename][uid][fieldname] = value

Description of keywords in syntax:

Key Data type Description
tablename string Name of the database table. Must be configured in $TCA array, otherwise it cannot be

processed.

uid mixed The UID of the record that is modified. If the record already exists, this is an integer. If you're
creating new records, use a random string prefixed with "NEW", eg. "NEW7342abc5e6d".

fieldname string Name of the database field you want to set a value for. Must be configure in $TCA[tablename
]['columns']

value string Value for "fieldname".

(Always make sure $this->stripslashes_values is false before using TCEmain.)

Notice: For FlexForms the data array of the FlexForm field is deeper than three levels. The number of possible levels for
FleFforms is infinite and defined by the data structure of the FlexForm. But FlexForm fields always end with a "regular value"
of course.

Examples of Data submission:
This creates a new page titled "The page title" as the first page inside page id 45:
$data['pages']['NEW9823be87'] = array(
 "title" => "The page title",
 "subtitle" => "Other title stuff",
 "pid" => "45"

TYPO3 Core APIs - 34

);

This creates a new page titled "The page title" right after page id 45 in the tree:
$data['pages']['NEW9823be87'] = array(
 "title" => "The page title",
 "subtitle" => "Other title stuff",
 "pid" => "-45"
);

This creates two new pages right after each other, located right after the page id 45:
$data['pages']['NEW9823be87'] = array(
 "title" => "Page 1",
 "pid" => "-45"
);
$data['pages']['NEWbe68s587'] = array(
 "title" => "Page 2",
 "pid" => "-NEW9823be87"
);

Notice how the second "pid" value points to the "NEW..." id placeholder of the first record. This works because the new id of
the first record can be accessed by the second record. However it works only when the order in the array is as above since
the processing happens in that order!

This updates the page with uid=9834 to a new title, "New title for this page", and no_cache checked:
$data['pages'][9834] = array(
 "title" => "New title for this page",
 "no_cache" => "1"
);

Clear cache
TCE also has an API for clearing the cache tables of TYPO3:

Syntax:
$tce->clear_cacheCmd($cacheCmd);

$cacheCmd values Description
[integer] Clear the cache for the page id given.

"all" Clears all cache tables (cache_pages, cache_pagesection, cache_hash).
Only available for admin-users unless expressly allowed by User TSconfig "options.clearCache.all"

"pages" Clears all pages from cache_pages.
Only available for admin-users unless expressly allowed by User TSconfig "options.clearCache.pages"

"temp_CACHED" Clears the temp_CACHED fiels in typo3conf/

Hook for cache post processing

You can configure cache post processing with a user defined PHP function. Configuration of the hook can be done from
(ext_)localconf.php. An example look like:

$TYPO3_CONF_VARS['SC_OPTIONS']['t3lib/class.t3lib_tcemain.php']['clearCachePostProc'][]
='myext_cacheProc->proc';
require_once(t3lib_extMgm::extPath('myext').'class.myext_cacheProc.php');

Flags in TCEmain
There are a few internal variables you can set prior to executing commands or data submission. These are the most
significant:

Internal variable Data type Description
->deleteTree Boolean Sets whether a page tree branch can be recursively deleted.

If this is set, then a page is deleted by deleting the whole branch under it (user must have
deletepermissions to it all). If not set, then the page is deleted only if it has no branch.
Default is false.

->copyTree Integer Sets the number of branches on a page tree to copy.
If 0 then branch is not copied. If 1 then pages on the 1st level is copied. If 2 then pages on the
second level is copied ... and so on.
Default is zero.

TYPO3 Core APIs - 35

Internal variable Data type Description
->reverseOrder Boolean If set, the data array is reversed in the order, which is a nice thing if you're creating a whole bunch

of new records.
Default is zero.

->copyWhichTables list of strings
(tables)

This list of tables decides which tables will be copied. If empty then none will. If "*" then all will
(that the user has permission to of course).
Default is "*"

->stripslashes_values boolean If set, then all values will be passed through stripslashes(). This has been the default since the
birth of TYPO3 in times when input from POST forms were always escaped an needed to be
unescaped. Today this is deprecated and values should be passed around without escaped
characters.

It is highly recommended to set this value to zero every time the class is used!

If you set this value to false you can pass values as-is to the class and it is most like that this is
what you want. Otherwise you would have to pass all values through addslashes() first.

Default is (currently) "1" (true) but might be changed in the future!

Using t3lib_TCEmain in scripts
It's really easy to use the class "t3lib_TCEmain" in your own scripts. All you need to do is include the class, build a
$data/$cmd array you want to pass to the class and call a few methods.

First of all they have to be run in the backend scope, mind you that! There must be a global $BE_USER object.

In your script you simply insert this line to include the class:

require_once (PATH_t3lib."class.t3lib_tcemain.php");

When that is done you can create an instance of t3lib_TCEmain. Here follows a few code listings with comments which will
provide you with enough knowledge to get started. It is assumed that you have populated the $data and $cmd arrays
correctly prior to these chunks of code. The syntax for these two arrays is explained on the previous pages.

Example: Submitting data
This is the most basic example of how to submit data into the database. It is four lines. Line 1 instantiates the class, line 2
defines that values will be provided without escaped characters (recommended!), line 3 registers the $data array inside the
class and initializes the class internally! Finally line 4 will execute the data submission.
 1: $tce = t3lib_div::makeInstance('t3lib_TCEmain');
 2: $tce->stripslashes_values = 0;
 3: $tce->start($data,array());
 4: $tce->process_datamap();

Example: Executing commands
The most basic way of executing commands. Line 1 creates the object, line 2 defines that values will be provided without
escaped characters (recommended), line 3 registers the $cmd array inside the class and initializes the class internally! Finally
line 4 will execute the commands.
 1: $tce = t3lib_div::makeInstance('t3lib_TCEmain');
 2: $tce->stripslashes_values=0;
 3: $tce->start(array(),$cmd);
 4: $tce->process_cmdmap();

Example: Clearing cache
In this example the clear-cache API is used. No data is submitted, no commands executed. Still you will have to initialize the
class by calling the start() method (which will initialize internal variables).

Notice: Clearing "all" cache will be possible only for users that are "admin" or for users with specific permissions to do so.
 1: $tce = t3lib_div::makeInstance('t3lib_TCEmain');
 2: $tce->start(Array(),Array());
 3: $tce->clear_cacheCmd('all');

Example: Complex data submission
Imagine the $data array something like this:
$data = array(
 'pages' => array(
 'NEW_1' => array(
 'pid' => 456,
 'title' => 'Title for page 1',
),
 'NEW_2' => array(

TYPO3 Core APIs - 36

 'pid' => 456,
 'title' => 'Title for page 2',
),
)
);

This aims to create two new pages in the page with uid "456". In the follow code this is submitted to the database. Notice how
line 3 reverses the order of the array. This is done because otherwise "page 1" is created first, then "page 2" in the same PID
meaning that "page 2" will end up above "page 1" in the order. Reversing the array will create "page 2" first and then "page 1"
so the "expected order" is preserved.

Apart from this line 6 will send a "signal" that the page tree should be updated at the earliest occasion possible. Finally, the
cache for all pages is cleared in line 7.
 1: $tce = t3lib_div::makeInstance('t3lib_TCEmain');
 2: $tce->stripslashes_values = 0;
 3: $tce->reverseOrder = 1;
 4: $tce->start($data,array());
 5: $tce->process_datamap();
 6: t3lib_BEfunc::getSetUpdateSignal('updatePageTree');
 7: $tce->clear_cacheCmd('pages');

Example: Both data and commands executed with alternative user object
In this case it is shown how you can use the same object instance to submit both data and execute commands if you like. The
order will depend on the order of line 4 and 5.

In line 3 the start() method is called, but this time with the third possible argument which is an alternative BE_USER object.
This allows you to force another backend user account to create stuff in the database. This may be useful in certain special
cases. Normally you should not set this argument since you want TCE to use the global $BE_USER.
 1: $tce = t3lib_div::makeInstance('t3lib_TCEmain');
 2: $tce->stripslashes_values = 0;
 3: $tce->start($data,$cmd,$alternative_BE_USER);
 4: $tce->process_datamap();
 5: $tce->process_cmdmap();

The "tce_db.php" API
This script is a gateway for POST forms to class.t3lib_TCEmain. It has historically been the script to which data was posted
when you wanted to update something in the database.

Today it is used for editing by only a few scripts, actually only the "Quick Edit" module in "Web>Page" (frontend). The
standard forms you find in TYPO3 are normally rendered and handled by "alt_doc.php" which includes t3lib_TCEmain on its
own.

For commands it is still used from various locations.

You can send data to this file either as GET or POST vars where POST takes precedence. The variable names you can use
are:

GP var name: Data type Description
data array Data array on the form [tablename][uid][fieldname] = value

Typically it comes from a POST form which submits a form field like <input name="data
[tt_content][123][header]" value="This is the headline" />

cmd array Command array on the form [tablename][uid][command] = value. This array may get
additional data set internally based on clipboard commands send in CB var!

Typically this comes from GET vars passed to the script like "&cmd[tt_content][123][delete]
=1" which will delete Content Element with UID 123

cacheCmd string Cache command sent to ->clear_cacheCmd

redirect string Redirect URL. Script will redirect to this location after performing operations (unless errors has
occured)

flags array Accepts options to be set in TCE object. Currently it supports "reverseOrder" (boolean).

mirror array -

prErr boolean If set, errors will be printed on screen instead of redirection. Should always be used, otherwise
you will see no errors if they happen.

CB array Clipboard command array. May trigger changes in "cmd"

vC string Verification code

uPT string Update Page Tree Trigger. If set and the manipulated records are pages then the update page
tree signal will be set.

TYPO3 Core APIs - 37

Files: t3lib_extFileFunctions basics
File operations in TCE is handled by the class "t3lib_extFileFunctions" which extends "t3lib_basicFileFunctions". The
instructions for file manipulation is passed to this class as a multidimensional array.

Files Array ($file):
Syntax:
$file[command][index][key] = value

Description of keywords in syntax:

Key Data type Description
command string (command

keyword)
The command type you want to execute.
See table below for command keywords, keys and values

index integer Integer index in the array which separates multiple commands of the same type.

key string Depending on the command type. The keys will carry the information needed to perform the
action. Typically a "target" key is used to point to the target directory or file while a "data" key
carries the data.
See table below for command keywords, keys and values

value string The value for the command
See table below for command keywords, keys and values

Command keywords and values:

Command Keys Value
delete "data" "data" = Absolute path to the file/folder to delete

copy "data"
"target"
"altName"

"data" = Absolute path to the file/folder to copy
"target" = Absolute path to the folder to copy to (destination)
"altName" = (boolean): If set, a new filename is made by appending numbers/unique-string in
case the target already exists.

move "data"
"target"
"altName"

(Exactly like copy, just replace the word "copy" with "move")

rename "data"
"target"

"data" = New name, max 30 characters alphanumeric
"target" = Absolute path to the target file/folder

newfolder "data"
"target"

"data" = Folder name, max 30 characters alphanumeric
"target" = Absolute path to the folder where to create it

newfile "data"
"target"

"data" = New filename
"target" = Absolute path to the folder where to create it

editfile "data"
"target"

"data" = The new content
"target" = Absolute path to the target file

upload "data"
"target"
upload_$id

"data" = ID-number (points to the global var that holds the filename-ref ($GLOBALS
["HTTP_POST_FILES"]["upload_".$id]["name"])
"target" = Absolute path to the target folder (destination)
upload_$id = File reference. $id must equal value of file[upload][...][data]!

See t3lib_t3lib_extFileFunctions::func_upload()

unzip "data"
"target"

"data" = Absolute path to the zip-file. (fileextension must be "zip")
"target" = The absolute path to the target folder (destination) (if not set, default is the same as
the zip-file)

It is unlikely that you will need to use this internally in your scripts like you will need t3lib_TCEmain. It is fairly uncommon to
need the file manipulations in own scripts unless you make a special application. Therefore the most typical usage of this API
is from tce_file.php and the core scripts that are activated by the "File > List" module.

However, if you need it this is an example (taken from tce_file.php) of how to initialize the usage.

 1: // Initializing:
 2: $this->fileProcessor = t3lib_div::makeInstance('t3lib_extFileFunctions');
 3: $this->fileProcessor->init($FILEMOUNTS, $TYPO3_CONF_VARS['BE']['fileExtensions']);
 4: $this->fileProcessor->init_actionPerms($BE_USER->user['fileoper_perms']);
 5:
 6: $this->fileProcessor->start($this->file);
 7: $this->fileProcessor->processData();

Line 2 makes an instance of the class and line 3 initializes the object with the filemounts of the current user and the array of
allow/deny file extensions in web-space and ftp-space (see below). Then the file operation permissions are loaded from the
user object in line 4. Finally, the file command array is loaded in line 6 (and internally additional configuration takes place

TYPO3 Core APIs - 38

from $TYPO3_CONF_VARS!). In line 7 the command map is executed.

Web-space, Ftp-space and $TYPO3_CONF_VARS['BE']['fileExtensions']
The control of fileextensions goes in two catagories. Webspace and Ftpspace. Webspace is folders accessible from a
webbrowser (below TYPO3_DOCUMENT_ROOT) and ftpspace is everything else.

The control is done like this: If an extension matches 'allow' then the check returns true. If not and an extension matches
'deny' then the check return false. If no match at all, returns true.

You list extensions comma-separated. If the value is a '*' every extension is matched. If no fileextension, true is returned if
'allow' is '*', false if 'deny' is '*' and true if none of these matches. This (default) configuration below accepts everything in
ftpspace and everything in webspace except php3 or php files:

$TYPO3_CONF_VARS['BE']['fileExtensions'] = array (
 'webspace' => array('allow'=>'', 'deny'=>'php3,php'),
 'ftpspace' => array('allow'=>'*', 'deny'=>'')
);

The "tce_file.php" API
This script serves as the file administration part of the TYPO3 Core Engine. It's a gateway for TCE (TYPO3 Core Engine) file-
handling through POST forms. It uses "t3lib_extfilefunc" for the manipulation of the files.

This script is used from the File > List module where you can rename, create, delete etc. files and directories on the server.

You can send data to this file either as GET or POST vars where POST takes precedence. The variable names you can use
are:

GP var name: Data type Description
file array Array of file operations. See previous information about "t3lib_extFileFunctions"

This could typically be a GET var like "&file[delete][0][data]=[absolute file path]" or a POST
form field like "<input type="text" name="file[newfolder][0][data]" value=""/><input
type="hidden" name="file[newfolder][0][target]" value="[absolute path to folder to create in]"/>"

redirect string Redirect URL. Script will redirect to this location after performing operations.

CB array Clipboard command array. May trigger changes in "file"

vC string Verification code

overwriteExistingFile
s

boolean If existing files should be overridden.

Hooks
The concept of "hooks"
Hooks are basically places in the source code where a user function will be called for processing if a such has been
configured. Hooks provide a way to extend functionality of TYPO3 and extensions easily and without blocking for others to do
the same.

Hooks vs. XCLASS extensions
Hooks are the recommended way of extending TYPO3 compared to extending the PHP classes with a child class (see
"XCLASS extensions"). It is so because only one extension of a PHP class can exist at a time while hooks may allow many
different user processings to occur. On the other hand hooks have to be implemented in the core before you can use them
while extending a PHP class via the XCLASS method allows you to extend anything spontaneously.

Proposing hooks
If you need to extend something which have no hook yet, then you should suggest implementing a hook. Normally that is
rather easily done by the author of the source you want to extend.

How a hook looks
The two codelines below is an example of how a hook is used for clear-cache post-processing. The objective of this need
could be to perform additional actions whenever the cache is cleared for a specific page.
require_once(t3lib_extMgm::extPath('myext').'class.myext_cacheProc.php');
$TYPO3_CONF_VARS['SC_OPTIONS']['t3lib/class.t3lib_tcemain.php']['clearCachePostProc'][]
='myext_cacheProc->proc';

TYPO3 Core APIs - 39

Line 1 includes a class which contains the user defined PHP code to be called by the hook.

Line 2 registers the class/method name from the included file with a hook inside of "t3lib_TCEmain". The hook will call the
user function after the clear-cache command has been executed. The user function will receive parameters which allows it to
see what clear-cache action was performed and typically also an object reference to the parent object. Then the user function
can take additional actions as needed.

If we take a look inside of t3lib_TCEmain we find the hook to be activated like this:
 1: // Call post processing function for clear-cache:
 2: if (is_array($TYPO3_CONF_VARS['SC_OPTIONS']['t3lib/class.t3lib_tcemain.php']
['clearCachePostProc'])) {
 3: $_params = array('cacheCmd'=>$cacheCmd);
 4: foreach($TYPO3_CONF_VARS['SC_OPTIONS']['t3lib/class.t3lib_tcemain.php']['clearCachePostProc']
as $_funcRef) {
 5: t3lib_div::callUserFunction($_funcRef,$_params,$this);
 6: }
 7: }

This is how hooks are typically constructed. The main action happens in line 5 where the function "t3lib_div::callUserFunction
()" is called. The user function is called with two arguments, an array with variable parameters and the parent object.

In line 3 the contents of the parameter array is prepared. This is of high interest to you because this is where you see what
data is passed to you and what data might possibly be passed by reference and thereby possible to manipulate from your
hook function.

Finally, notice how the array $TYPO3_CONF_VARS['SC_OPTIONS']['t3lib/class.t3lib_tcemain.php']['clearCachePostProc'] is
traversed and for each entry the value is expected to be a function reference which will be called. This allows many hooks to
be called at the same place. The hooks can even rearrange the calling order if they dare.

The syntax of a function reference (or object reference if t3lib_div::getUserObj is used in the hook instead) can be seen in the
API documentation of t3lib_div.

Hook configuration
There is no complete index of hooks in the core. But they are easy to search for and find. And typically it comes quite
naturally since you will find the hooks in the code you want to extend - if they exists.

This index will list the main variable spaces for configuration of hooks. By the names of these you can easily scan the source
code to find which hooks are available or might be interesting for you.

The index below also includes some variable spaces which does not only carry hook configuration but might be used for other
purposes as well.

$TYPO3_CONF_VARS['EXTCONF']
Configuration space for extensions.

This will contain all kinds of configuration options for specific extensions including possible hooks in them! What options are
available to you will depend on a search in the documentation for that particular extension.
$TYPO3_CONF_VARS['EXTCONF'][extension_key][sub_key] = value

● extension_key : The unique extension key

● sub_key : Whatever the script defines. Typically it identifies the context of the hook

● value : It is up to the extension what the values mean, if they are mere configuration or hooks or whatever and how deep
the arrays go. Read the source code where the options are implemented to see. Or the documentation of the extension, if
available.

Notice: $TYPO3_CONF_VARS["EXTCONF"] is the recommended place to put hook configuration that are available inside
your extensions!

Here is an example of how the EXTCONF array is used inside an extension. Notice, this example is not a hook (sorry,
couldn't find a better example) but it is based on the same principles. It is just an example of configuration of additional "root
line fields" that can be used during indexing (line 8-12). It shows the versatility of the EXTCONF array:
 1: function getRootLineFields(&$fieldArr) {
 2: $rl = $this->rootLevel;
 3:
 4: $fieldArr['rl0'] = intval($rl[0]['uid']);
 5: $fieldArr['rl1'] = intval($rl[1]['uid']);
 6: $fieldArr['rl2'] = intval($rl[2]['uid']);
 7:
 8: if (is_array($GLOBALS['TYPO3_CONF_VARS']['EXTCONF']['indexed_search']
['addRootLineFields'])) {

TYPO3 Core APIs - 40

 9: foreach($GLOBALS['TYPO3_CONF_VARS']['EXTCONF']['indexed_search']['addRootLineFields'] as
$fieldName => $rootLineLevel) {
 10: $fieldArr[$fieldName] = intval($rl[$rootLineLevel]['uid']);
 11: }
 12: }
 13: }

$TYPO3_CONF_VARS['SC_OPTIONS']
Configuration space for core scripts.

This array is created as an adhoc space for creating hooks from any script. This will typically be used from the core scripts of
TYPO3 which do not have a natural identifier like extensions have their extension keys.
$TYPO3_CONF_VARS['SC_OPTIONS'][main_key][sub_key][index] = function_reference

● main_key : The relative path of a script (for output scripts it should be the "script ID" as found in a comment in the HTML
header)

● sub_key : Whatever the script defines. Typically it identifies the context of the hook.

● index : Integer index typically. Can be unique string if you have a reason to use that. Normally it has no greater
significance since the value of the key is not used. The hooks normally traverse over the array and uses only the value
(function reference)

● function_reference : A function reference using the syntax of t3lib_div::callUserFunction() or t3lib_div::getUserObj()
depending on implementation of the hook.

The above syntax is how a hook is typically defined but it might differ and it might not be a hook at all, but just configuration.
Depends on implementation in any case.

The following example shows a hook from tslib_fe. In this case the function t3lib_div::getUserObj() is used for the hook. The
function_reference is referring to the class name only since the function returns an object instance of that class. The method
name to call is predefined by the hook, in this case "sendFormmail_preProcessVariables()". This method allows to pass any
number of variables along instead of the limited $params and $pObj variables from t3lib_div::callUserFunction().

 1: // Hook for preprocessing of the content for formmails:
 2: if (is_array($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['sendFormmail-
PreProcClass'])) {
 3: foreach($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['sendFormmail-
PreProcClass'] as $_classRef) {
 4: $_procObj = &t3lib_div::getUserObj($_classRef);
 5: $EMAIL_VARS = $_procObj->sendFormmail_preProcessVariables($EMAIL_VARS,$this);
 6: }
 7: }

In this example we are looking at a special hook, namely the one for RTE transformations. Well, maybe this is not a "hook" in
the normal sense, but the same principles are used. In this case the "index" key is defined to be the transformation key name,
not a random integer since we do not iterate over the array as usual. In this case t3lib_div::getUserObj() is also used.
 1: if ($_classRef = $GLOBALS['TYPO3_CONF_VARS']['SC_OPTIONS']['t3lib/class.t3lib_parsehtml_proc.php']
['transformation'][$cmd]) {
 2: $_procObj = &t3lib_div::getUserObj($_classRef);
 3: $_procObj->pObj = &$this;
 4: $_procObj->transformationKey = $cmd;
 5: $value = $_procObj->transform_db($value,$this);
 6: }

A classic hook also from tslib_fe. This is also based on t3lib_div::callUserFunction() and it passes a reference to $this along
to the function via $_params. In the user defined function $_params['pObj']->content is meant to be manipulated in some
way. The return value is insignificant - everything works by the reference to the parent object.
 1: // Hook for post-processing of page content cached/non-cached:
 2: if (is_array($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['contentPostProc-
all'])) {
 3: $_params = array('pObj' => &$this);
 4: foreach($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['contentPostProc-
all'] as $_funcRef) {
 5: t3lib_div::callUserFunction($_funcRef,$_params,$this);
 6: }
 7: }

TYPO3 Core APIs - 41

$TYPO3_CONF_VARS['TBE_MODULES_EXT']
Configuration space for backend modules.

Among these configuration options you might find entry points for hooks in the backend. This somehow overlaps the intention
of "SC_OPTIONS" above but this array is an older invention and slightly outdated.
$TBE_MODULES_EXT[backend_module_key][sub_key] = value

● backend_module_key : The backend module key for which the configuration is used.

● sub_key : Whatever the backend module defines.

● value : Whatever the backend module defines.

The following example shows TBE_MODULES_EXT being used for adding items to the Context Sensitive Menus (Clickmenu)
in the backend. The hook value is an array with a key pointing to a file reference to class file to include. Later each class is
instantiated and a fixed method inside is called to do processing on the array of menu items. This kind of hook is non-
standard in the way it is made.

 1: // Setting internal array of classes for extending the clickmenu:
 2: $this->extClassArray = $GLOBALS['TBE_MODULES_EXT']['xMOD_alt_clickmenu']['extendCMclasses'];
 3:
 4: // Traversing that array and setting files for inclusion:
 5: if (is_array($this->extClassArray)) {
 6: foreach($this->extClassArray as $extClassConf) {
 7: if ($extClassConf['path']) $this->include_once[]=$extClassConf['path'];
 8: }
 9: }

The following code listings works in the same way. First, a list of class files to include is registered. Then in the second code
listing the same array is traversed and each class is instantiated and a fixed function name is called for processing.
 1: // Setting class files to include:
 2: if (is_array($TBE_MODULES_EXT['xMOD_db_new_content_el']['addElClasses'])) {
 3: $this->include_once = array_merge($this->include_once,$TBE_MODULES_EXT
['xMOD_db_new_content_el']['addElClasses']);
 4: }

 1: // PLUG-INS:
 2: if (is_array($TBE_MODULES_EXT['xMOD_db_new_content_el']['addElClasses'])) {
 3: reset($TBE_MODULES_EXT['xMOD_db_new_content_el']['addElClasses']);
 4: while(list($class,$path)=each($TBE_MODULES_EXT['xMOD_db_new_content_el']
['addElClasses'])) {
 5: $modObj = t3lib_div::makeInstance($class);
 6: $wizardItems = $modObj->proc($wizardItems);
 7: }
 8: }

Creating hooks
You are encouraged to create hooks in your sources of extensions if they seem meaningful. Typically someone would
request a hook somewhere. Before you implement it, consider if it is the right place to put it etc. On the one hand we want to
have many hooks but not more than needed. Redundant hooks or hooks which are implemented in the wrong context is just
confusing. So put a little thought into it first, but be generous.

There are two main methods of calling a user defined function in TYPO3.

● t3lib_div::callUserFunction() - The classic way. Takes a file/class/method reference as value and calls that function. The
argument list is fixed to a parameter array and a parent object. So this is the limitation. The freedom is that the reference
defines the function name to call. This method is mostly useful for small-scale hooks in the sources.

● t3lib_div::getUserObject() - Create an object from a user defined file/class. The method called in the object is fixed by the
hook, so this is the non-flexible part. But it is cleaner in other ways, in particular that you can even call many methods in
the object and you can pass an arbitrary argument list which makes the API more beautiful. You can also define the
objects to be singletons, instantiated only once in the global scope.

Here follows some examples.

Hook made with t3lib_div::getUserObj()

 // Hook for preprocessing of the content for formmails:
if (is_array($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['sendFormmail-
PreProcClass'])) {
 foreach($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['sendFormmail-
PreProcClass'] as $_classRef) {
 $_procObj = &t3lib_div::getUserObj($_classRef);
 $EMAIL_VARS = $_procObj->sendFormmail_preProcessVariables($EMAIL_VARS,$this);

TYPO3 Core APIs - 42

 }
}

Hook made with t3lib_div::callUserFunction()

 // Call post processing function for constructor:
if (is_array($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['tslib_fe-
PostProc'])) {
 $_params = array('pObj' => &$this);
 foreach($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['tslib_fe-PostProc'] as
$_funcRef) {
 t3lib_div::callUserFunction($_funcRef,$_params,$this);
 }
}

TYPO3 Core APIs - 43

Variables and Constants
After init.php has been included in the backend there is a set of variables, constants and classes available to the parent
script.

The column "Avail. in FE" is an indicator that tells you if the constant, variable or class mentioned is also available to scripts
running under the frontend of the "cms" extension.

Constants
Constants normally define paths and database information. These values are global and cannot be changed when they are
first defined. This is why constants are used for such vital information.

These constants are defined by either init.php or scripts included from that script.

Notice: Constants in italics may be set in a script prior to inclusion of init.php so they are optional.

Constant Defined in Description Avail. in FE
TYPO3_OS init.php Operating systen; Windows = “WIN”, other = “” (presumed to be some

sort of Unix)
YES

TYPO3_MODE init.php Mode of TYPO3: Set to either “FE” or “BE” depending on frontend or
backend execution. So in "init.php" and "thumbs.php" this value is "BE"

YES
value = "FE"

PATH_thisScript init.php Abs. path to current script. YES

TYPO3_mainDir init.php This is the directory of the backend administration for the sites of this
TYPO3 installation. Hardcoded to “typo3/”. Must be a subdirectory to
the website. See elsewhere for descriptions on how to change the
default admin directory, "typo3/", to something else.

YES

PATH_typo3 init.php Abs. path of the TYPO3 admin dir (PATH_site + TYPO3_mainDir). -

PATH_typo3_mod init.php Relative path (from the PATH_typo3) to a properly configured module.
Based on TYPO3_MOD_PATH.

-

PATH_site init.php Abs. path to directory with the frontend (one directory above
PATH_typo3)

YES

PATH_t3lib init.php Abs. path to "t3lib/" (general TYPO3 library) within the TYPO3 admin
dir

YES

PATH_typo3conf init.php Abs. TYPO3 configuration path (local, not part of source)
Must be defined in order for "t3lib/config_default.php" to return!

YES

TYPO3_db config_default.php Name of the database, for example "t3_coreinstall". Is defined after the
inclusion of "typo3conf/localconf.php" (same for the other TYPO3_*
constants below

YES

TYPO3_db_username config_default.php Database username YES

TYPO3_db_password config_default.php Database password YES

TYPO3_db_host config_default.php Database hostname, eg. “localhost” YES

TYPO3_tables_script config_default.php By default "t3lib/stddb/tables.php" is included as the main table
definition file. Alternatively this constant can be set to the filename of
an alternative "tables.php" file. Must be located in "typo3conf/"
Depricated. Make Extensions instead.

YES

TYPO3_extTableDef_script config_default.php Name of a php-include script found in "typo3conf/" that contains php-
code that further modifies the variables set by "t3lib/stddb/tables.php"
Depricated. Make Extensions instead.

YES

TYPO3_languages config_default.php Defines the system language keys in TYPO3s backend. YES

TYPO3_DLOG config_default.php If true, calls to t3lib_div::devLog() can be made in both frontend and
backend; This is event logging which can help to track debugging in
general.

YES

TYPO3_MOD_PATH [prior to init.php] Path to module relative to PATH_typo3 (as defined in the module
configuration). Must be defined prior to "init.php".

-

TYPO3_enterInstallScript [prior to init.php] If defined and set true the Install Tool is activated and the script exits
after that. Used in "typo3/install/index.php":

Example:

define('TYPO3_enterInstallScript', '1');

-

TYPO3 Core APIs - 44

Constant Defined in Description Avail. in FE
TYPO3_PROCEED_IF_NO_
USER

[prior to init.php] If defined and set true the "init.php" script will return to the parent script
even if no backend user was authenticated!

This constant is set by for instance the "index.php" script so it can
include "init.php" and still show the login form:

define("TYPO3_PROCEED_IF_NO_USER", 1);
require ("init.php");

Please be very careful with this feature - use it only when you have
total control of what you are doing!

-

TYPO3_cliMode [prior to init.php] Initiates CLI (Command Line Interface) mode. This is used when you
want a shell executable PHP script to initialize a TYPO3 backend.
For more details see section about “Initialize TYPO3 backend in a PHP
shell script” in “Inside TYPO3”

TYPO3_version config_default.php The TYPO3 version:
x.x.x for released versions,
x.x.x-dev for development versions leading up to releases
x.x.x-bx for beta-versions

YES

Global variables
Notice: Variables in italics may be set in a script prior to inclusion of "init.php" so they are optional.

Notice: The variables from "t3lib/stddb/tables.php" are only available in the frontend occasionally or partly. Please read more
in the documentation of the "cms" extension on this issue.

Global variable Defined in Description Avail. in FE
$TYPO3_CONF_VARS config_default.php TYPO3 configuration array. Please refer to the source code of

"t3lib/config_default.php" where each option is described in detail as
comments. The same comments are also available in the Install Tool
under the menu "All Configuration"

YES

$TYPO3_LOADED_EXT config_default.php Array with all loaded extensions listed with a set of paths. You can
check if an extension is loaded by the function
t3lib_extMgm::isLoaded($key) where $key is the extension key of the
module.

YES

$TYPO3_DB init.php An instance of the TYPO3 DB wrapper class, t3lib_db.
You have to use this object for all interaction with the database.
t3lib_db contains mysql wrapper functions so you easily swap all
hardcoded MySQL calls with function calls to $GLOBALS
['TYPO3_DB']->

YES

$EXEC_TIME config_default.php Is set to "time()" so that the rest of the script has a common value for
the script execution time.

YES

$SIM_EXEC_TIME config_default.php Is set to $EXEC_TIME but can be altered later in the script if we want
to simulate another execution-time when selecting from eg. a
database (used in the frontend for preview of future and past dates)

YES

$TYPO_VERSION config_default.php Deprecated - used constant “TYPO3_version” instead! YES

$CLIENT init.php Array with browser information (based on HTTP_USER_AGENT).
Array keys:
“BROWSER” = msie,net,opera or blank,
“VERSION” = browser version as double,
“SYSTEM” = win,mac,unix

YES

$PARSETIME_START init.php Time in milliseconds right after inclusion of the configuration. -

$PAGES_TYPES t3lib/stddb/tables.php See section on $TCA (occastionally)

$ICON_TYPES t3lib/stddb/tables.php See section on $TCA (occastionally)

$LANG_GENERAL_LABE
LS

t3lib/stddb/tables.php See section on $TCA (occastionally)

$TCA t3lib/stddb/tables.php See section on $TCA YES, partly

$TBE_MODULES t3lib/stddb/tables.php The backend main/sub module structure. See section elsewhere plus
sourcecode of "class.t3lib_loadmodules.php" which also includes
some examples.

(occastionally)

$TBE_STYLES t3lib/stddb/tables.php (occastionally)

$T3_SERVICES t3lib/stddb/tables.php Global registration of services.

TYPO3 Core APIs - 45

Global variable Defined in Description Avail. in FE
$T3_VAR config_default.php Space for various internal global data storage in TYPO3. Each key in

this array is a data space for an application. Keys currently defined
for use is:

['callUserFunction'] + ['callUserFunction_classPool']: Used by
t3lib_div::callUserFunction to store persistent objects.
['getUserObj'] : User by t3lib_div::getUserObj to store persistent
objects.
['RTEobj'] : Used to hold the current RTE object if any. See
t3lib_BEfunc.
['ext'][extension-key] : Free space for extensions.

$FILEICONS t3lib/stddb/tables.php Assoc. array; keys are the type (eg. "tif") and values are the filename
(without path)

(occastionally)

$WEBMOUNTS init.php Array of uid's to be mounted in the page-tree (depends)

$FILEMOUNTS init.php Array of filepaths on the server to be mountet in the directory tree (depends)

$BE_USER init.php Backend user object (depends)

$temp_* - Various temporary variables are allowed to use global variables
prefixed $temp_

-

$typo_db* [config_default.php but
N/A!]

Variables used inside of "typo3conf/localconf.php" to configure the
database.
Notice: These values are unset again by "config_default.php".

-

$TBE_MODULES_EXT [In ext_tables.php files
of extensions]

Used to store information about modules from extensions that should
be included in "function menus" of real modules. See the Extension
API for details.
Unset in "config_default.php"

(occasionally)

$TCA_DESCR [tables.php files] Can be set to contain file references to local lang files containing
TCA_DESCR labels. See section about Context Sensitive Help.
Unset in "config_default.php"

Backend User Object
Checking user access for $BE_USER from PHP
The backend user of a session is always available to the backend scripts as the global variable $BE_USER. The object is
created in init.php and is an instance of the class "t3lib_beUserAuth" (which extends "t3lib_userAuthGroup" which extends
"t3lib_userAuth").

In addition to $BE_USER two other global variables are of interest - $WEBMOUNTS and $FILEMOUNTS, each holding an
array with the DB mounts and File mounts of the $BE_USER.

In order to introduce how the $BE_USER object can be helpful to your backend scripts/modules, this is a few examples:

Checking access to current backend module
$MCONF is module configuration and the key $MCONF["access"] determines the access scope for the module. This function
call will check if the $BE_USER is allowed to access the module and if not, the function will exit with an error message.

$BE_USER->modAccess($MCONF,1);

Checking access to any backend module
If you know the module key you can check if the module is included in the access list by this function call:

$BE_USER->check("modules","web_list");

Here access to the module "Web>List" is checked.

Access to tables and fields?
The same function ->check() can actually check all the ->groupLists inside $BE_USER. For instance:

Checking modify access to the table "pages":
$BE_USER->check('tables_modify','pages');

Checking selecting access to the table "tt_content":
$BE_USER->check('tables_select','tt_content');

TYPO3 Core APIs - 46

Checking if a table/field pair is allowed explicitly through the "Allowed Excludefields":
$BE_USER->check("non_exclude_fields",$table.":".$field);

Is "admin"?
If you want to know if a user is an "admin" user (has complete access), just call this method:

$BE_USER->isAdmin();

Read access to a page?
This function call will return true if the user has read access to a page (represented by its database record, $pageRec):

$BE_USER->doesUserHaveAccess($pageRec,1);

Changing the "1" for other values will check other permissions. Fx. "2" will check id the user may edit the page and "4" will
check if the page can be deleted.

Is a page inside a DB mount?
Access to a page should not be checked only based on page permissions but also if a page is found within a DB mount for
ther user. This can be checked by this function call ($id is the page uid):

$BE_USER->isInWebMount($id)

Selecting readable pages from database?
If you wish to make a SQL statement which selects pages from the database and you want it to be only pages that the user
has read access to, you can have a proper WHERE clause returned by this function call:

$BE_USER->getPagePermsClause(1);

Again the number "1" represents the "read" permission; "2" would represent "edit" permission and "4" would be delete
permission and so on. The result from the above query could be this string:
((pages.perms_everybody & 1 = 1)OR(pages.perms_userid = 2 AND pages.perms_user & 1 = 1)OR
(pages.perms_groupid in (1) AND pages.perms_group & 1 = 1))

Saving module data
This stores the input variable $compareFlags (an array!) with the key "tools_beuser/index.php/compare"
 $compareFlags = t3lib_div::GPvar("compareFlags");
 $BE_USER->pushModuleData("tools_beuser/index.php/compare",$compareFlags);

Getting module data
This gets the module data with the key "tools_beuser/index.php/compare" (lasting only for the session)
 $compareFlags = $BE_USER->getModuleData("tools_beuser/index.php/compare","ses");

Returning object script from TSconfig
This function can return a value from the "User TSconfig" structure of the user. In this case the value for
"options.clipboardNumberPads":

$BE_USER->getTSConfigVal("options.clipboardNumberPads");

Getting the username
The full "be_users" record of a authenticated user is available in $BE_USER->user as an array. This will return the
"username":

$BE_USER->user["username"]

Get User Configuration value
The internal ->uc array contains options which are managed by the User>Setup module (extensions "setup"). These values
are accessible in the $BE_USER->uc array. This will return the current state of "Condensed mode" for the user:

$BE_USER->uc['condensedMode']

PHP Class Extension
Introduction
Practically all important scripts have their main code encapsulated in a class (typically named SC_[scriptname] and

TYPO3 Core APIs - 47

instantiated as the global object $SOBE) and almost all library classes used in TYPO3 - both frontend and backend - can be
extended by user defined classes. Extension of TYPO3 PHP classes may also be referred to as an "XCLASS extension".

Extending TYPO3s PHP classes is recommended mostly for special needs in individual projects. This is due to the limitation
that a class can only be extended once. Thus, if many extensions try to extend the same class, only one of them will succeed
and in turn the others will not function correctly.

So, extending classes is a great option for individual projects where special "hacks" are needed. But generally it is a poor way
of programming TYPO3 extensions in which case you should look for a system hook or request a system hook to be made for
your purpose if generally meaningful.

Configuring user-classes works like this:

1. In (ext_)localconf.php you configure for either frontend or backend that you wish to include a file with the extension of the
class. This inclusion is usually done in the end of the class-file itself based on a lookup in TYPO3_CONF_VARS.

2. Whenever the class is instantiated as an object, the sourcecode checks if a user-extension of that class exists. If so, then
that class (or an extension of the extended class) is instantiated and not the “normal” (parent) class.
Getting the correct instance of a class is done by using the function t3lib_div::makeInstance() instead of "new ..." when an
object is created.

Example
Say you wish to make an addition to the stdWrap method found in the class “tslib_cObj” (found in the class file
tslib/class.tslib_content.php).

The first thing to do is to create the extension class. So you create a file in the typo3conf/ directory named
“class.ux_tslib_content.php”. “ux” is a prefix meaning “user-extension”. This file may look like this:

<?php
/**
* User-Extension of tslib_cObj class.
*
* @author Kasper Skårhøj <kasper@typo3.com>
*/

class ux_tslib_cObj extends tslib_cObj {
 function stdWrap($content,$conf) {
 // Call the real stdWrap function in the parent class:
 $content = parent::stdWrap($content,$conf);
 // Process according to my user-defined property:
 if ($conf["userDefined_wrapInRed"]) {
 $content=''.$content.'';
 }
 return $content;
 }
}

?>

The next thing is to configure TYPO3 to include this class file as well after the original file tslib/class.tslib_content.php:

$TYPO3_CONF_VARS["FE"]["XCLASS"]["tslib/class.tslib_content.php"]=
 PATH_typo3conf."class.ux_tslib_content.php";

So when the file “tslib/class.tslib_content.php” is included inside of class.tslib_pagegen.php, the extension class is included
immediately from inside the “tslib/class.tslib_content.php” file (this is from the bottom of the file):

if (defined("TYPO3_MODE") &&
$TYPO3_CONF_VARS[TYPO3_MODE]["XCLASS"]["tslib/class.tslib_content.php"]) {

 include_once($TYPO3_CONF_VARS[TYPO3_MODE]["XCLASS"]["tslib/class.tslib_content.php"]);
}

The last thing which remains is to instantiate the class ux_tslib_cObj instead of tslib_cObj. This is done automatically,
because everywhere tslib_cObj is instantiated, it is first examined if ux_tslib_cObj exists and if so, that class is instantiated
instead!

This is done by instantiating the object with "t3lib_div::makeInstance()":

$cObj = t3lib_div::makeInstance("tslib_cObj");

Originally it looked like this:

TYPO3 Core APIs - 48

$cObj = new tslib_cObj;

Internally "t3lib_div::makeInstance()" does this:

$cObj = class_exists("ux_tslib_cObj") ? new ux_tslib_cObj : new tslib_cObj;

IMPORTANT
When setting up the file to include, in particular from t3lib/, notice the difference between $TYPO3_CONF_VARS["BE"]
["XCLASS"][...] and $TYPO3_CONF_VARS["FE"]["XCLASS"][...]. The key “FE” is used when the class is included by a front-
end script (those initialized by tslib/index_ts.php and tslib/showpic.php - both also known as index.php and showpic.php in
the root of the website), “BE” is used by backend scripts (those initialized by typo3/init.php or typo3/thumbs.php). This feature
allows you to include a different extension when the (t3lib/-) class is used in the frontend and in the backend.

Which classes?
Most code in TYPO3 resides in classes and therefore anything in the system can be extended. So you should rather say to
yourself: In which script (and thereby which class) is it that I'm going to extend/change something. When you know which
script, you simply open it, look inside and somewhere you'll find the lines of code which are responsible for the inclusion of
the extension, typically in the bottom of the script.

The exceptions to this rule is classes like "t3lib_div", "t3lib_extMgm" or "t3lib_BEfunc". These classes contain methods which
are designed to be call non-instantiated, like "t3lib_div::fixed_lgd_cs()". Whether a class works on this basis is normally noted
in the header of the class file. When methods in a class is called non-instantiated there is no way you can extend that
method/class.

Example - Adding a small feature in the interface
Say you wish to add a little section with help text in the bottom of the “New” dialog:

So this is what you do:

1. Find out that the script in question is “typo3/db_new.php” (right-click frame, select “Properties” and look at URL...:-)

2. Then examine the scripts for its classes and methods. In this case you'll find two classes in the file; “localPageTree”
(extends t3lib_pageTree) and “SC_db_new”. The class “SC_db_new” is the so called “Script Class” - this will hold the
code specifically for this script.
You also find that the only code executed in the global scope is this:

$SOBE = t3lib_div::makeInstance("SC_db_new");

$SOBE->init();
$SOBE->main();
$SOBE->printContent();

3. When you examine the SC_db_new class you find that the main() method is the one you would like to extend.

4. Finally you find that immediately after the definition of the two classes there is three lines of code which will provide you
with the final piece of knowledge you need:

// Include extension?
if (defined("TYPO3_MODE") && $TYPO3_CONF_VARS[TYPO3_MODE]["XCLASS"]["typo3/db_new.php"]) {
 include_once($TYPO3_CONF_VARS[TYPO3_MODE]["XCLASS"]["typo3/db_new.php"]);
}

So now you know that the key to use is “typo3/db_new.php” when you wish to define a script which should be included as
the extension.

So now after your investigations you do the trivial stuff:

TYPO3 Core APIs - 49

1. Create your extension class (here typo3conf/class.test.php)

<?php

class ux_SC_db_new extends SC_db_new {
 function main() {
 global $doc;
 parent::main();
 $this->content.=$doc->section("HELP","- make a choice!",0,1);
 }
}

?>

2. Configure your extension class in typo3conf/localconf.php

$TYPO3_CONF_VARS["BE"]["XCLASS"]["typo3/db_new.php"] = PATH_typo3conf."class.test.php";

There is no “table of extendable classes” in this document because 1) all classes are extendable and 2) the number of
classes will grow as TYPO3 is further developed and extensions are made and 3) finally you cannot extend a class unless
you know it exists and have analysed some of its internal structure (methods / variables) - so you'll have to dig into the source
anyway!

Therefore; If you wish to extend something, follow this suggestion for an analysis of the situation and you'll end up with the
knowledge needed in order to extend that class and thereby extend TYPO3 without loosing backwards compatibility with
future updates. Great.

Notes on SC_* classes (script classes)

There is one more thing to note about especially the SC_* classes in the backend:

1. Global vars: They use a lot of variables from the global scope. This is due to historical reasons; The code formerly
resided in the global scope and a quick conversion into classes demanded this approach. Future policy is to keep as
many variables internal as possible and if any of these SC_* classes are developed further in the future, some of the
globals might on that occasion be internalized.

2. Large methods: There are typically a init(), main() and printContent() method in the SC-classes. Each of these, in
particular the main() method may grow large. Processing stuff in the start and end of the methods is easy - you just call
parent::[methodname]() from your extension. But if you want to extend or process something in the middle of one of these
methods, it would be necessary to call a dummy method at that point in the parent class. Such a dummy method would
then be used for processing in your class, but would not affect the general use of the parent class. Such dummy-method
calls are not widely included yet, but will be as suggestions for them appears. And you are very welcome to give in such
suggestions.

I'll just give an example to illustrate what I mean:

class SC_example {
 function main() {
 $number = 100;
 echo "The number is ".$number;
 }
}

This class prints the text “The number is 100”. If you wish to do some calculations to the $number-variable before it is
printed, you are forced to simply include the whole original main-method in your extension script. Here it would be no
problem because the method is 2 codelines long. But it could be 200 codelines! So what you do is that you suggest to the
TYPO3 development to call a “harmless” dummy method in the main() method...

class SC_example {
 function main() {
 $number = 100;
 $number = $this->processNumber($number);
 echo "The number is ".$number;
 }
 function processNumber($theNumber) {
 return $theNumber;
 }
}

... and then you extend the class as follows:

TYPO3 Core APIs - 50

class ux_SC_example extends SC_example {
 function processNumber($theNumber) {
 return $theNumber<100 ? "less than 100" : "greater than 100";
 }
}

... and now the main() method would print “The number is greater than 100” instead.

Notice that you'll have to make such suggestions for dummy method calls because we will include them only as people
need them.

Extending methods
When extending a method like in the case above with stdWrap() please observe that such a method might gain new
parameters in the future without further notice. For instance stdWrap is currently defined like this:

function stdWrap($content,$conf) {

... but maybe some day this method will have another parameter added, eg:
function stdWrap($content,$conf,$yet_a_parameter=0) {

This means if you want to override stdWrap(), but still call the parent class' method, you must extend your own method call
from...:

 function stdWrap($content,$conf) {
 // Call the real stdWrap method in the parent class:
 $content = parent::stdWrap($content,$conf);

...

... to:

 function stdWrap($content,$conf,$yet_a_parameter=0) {
 // Call the real stdWrap method in the parent class:
 $content = parent::stdWrap($content,$conf,$yet_a_parameter);

...

Also be aware of constuctors. If you have a constructor in your extension class you must observe if there is a constructor in
the parent class which you should call first / after. In case, you can do it by “parent::[original class name]”

For instance the class tslib_fe is instantiated into the global object $TSFE. This class has a constructor looking like this:

/**
 * Class constructor
 */
function tslib_fe($TYPO3_CONF_VARS, $id, $type, $no_cache="", $cHash="", $jumpurl="") {
 // Setting some variables:
 $this->id = $id;
 $this->type = $type;
 $this->no_cache = $no_cache ? 1 : 0;
 $this->cHash = $cHash;
 $this->jumpurl = $jumpurl;
 $this->TYPO3_CONF_VARS = $TYPO3_CONF_VARS;
 $this->clientInfo = t3lib_div::clientInfo();
 $this->uniqueString=md5(microtime());
 $this->makeCacheHash();
}

So as you see, you probably want to call this method. But lets also say you wish to make sure the $no_cache parameter is
always set to 1 (for some strange reason...). So you make an extension class like this with a new constructor, ux_tslib_fe(),
overriding the $no_cache variable and then calling the parent class constructor:

class ux_tslib_fe extends tslib_fe {
 function ux_tslib_fe($TYPO3_CONF_VARS, $id, $type, $no_cache="", $cHash="", $jumpurl=""){
 $no_cache=1;
 parent::tslib_fe($TYPO3_CONF_VARS, $id, $type, $no_cache, $cHash, $jumpurl);
 }
}

TYPO3 Core APIs - 51

User defined methods in classes
Prefix user defined methods and internal variables with “ux_”! Thus you don't risk to choose a method name which may later
be added to the parent class in the TYPO3 distribution!

Example, continued from above:

class ux_tslib_fe extends tslib_fe {
 var $ux_fLPmode = 1; // If you "feelLuckyPunk" this is the no_cache value

 function ux_tslib_fe($TYPO3_CONF_VARS, $id, $type, $no_cache="", $cHash="", $jumpurl=""){
 // setting no_cache?
 $no_cache=$this->ux_settingNoCache();
 // Calling parent constructor:
 parent::tslib_fe($TYPO3_CONF_VARS, $id, $type, $no_cache, $cHash, $jumpurl);
 }
 /**
 * Setting the no_cache value based on user-input in GET/POST var, feelLuckyPunk
 */
 function ux_settingNoCache() {
 return t3lib_div::GPvar("feelLuckyPunk") ? $this->ux_fLPmode : 0;
 }
}

(User defined methods and variables are in purple)

A few examples of extending the backend classes
The concept of extending classes in the backend can come in handy in many cases. First of all it's a brilliant way to make
your own project specific extensions to TYPO3 without spoiling the compatibility with the distribution! This is a very important
point! Stated another way: By making an "XCLASS extension" you can change one method in a TYPO3 class and next time
you update TYPO3, your method is still there - but all the other TYPO3 code has been updated! Great!

Also for development and experimental situations is great. Generally the concept offers you quite a lot of freedom, because
you are seriously able to take action if you need something solved here and now which cannot be fixed in the main
distribution at the moment.

Anyway, here's a few simple examples:

1) Say you wish to have the backend user time out after 30 seconds instead of the default 6000.

1. In localconf.php, insert:
 $TYPO3_CONF_VARS["BE"]["XCLASS"]["t3lib/class.t3lib_beuserauth.php"]
 =PATH_typo3conf."class.ux_myBackendUserExtension.php";

2. Create the file “class.ux_myBackendUserExtension.php” in typo3conf/ folder and put this content in:

<?php

class ux_t3lib_beUserAuth extends t3lib_beUserAuth {
 var $auth_timeout_field = 30;
}

?>

Of course you need to know why it's the variable auth_timeout_field which must be set, but you are a bright person, so
of course you go directly to the file t3lib/class.t3lib_beuserauth.php, open it and find that
var $auth_timeout_field = 6000; there!

You could also easily insert an IP-filter (which is already present though...). Here you have to take a little adventure a bit
further. As you see in “class.t3lib_beuserauth.php” extends “t3lib_userAuthGroup” which extends “t3lib_userAuth” the method
start() is the place where the users are authenticated. This could quickly be exploited to make this IP filter for the backend:

<?php

class ux_t3lib_beUserAuth extends t3lib_beUserAuth {
 var $auth_timeout_field = 30;

 function start() {
 if (!t3lib_div::cmpIP(getenv("REMOTE_ADDR"), "192.168.*.*")) {
 die("Wrong IP, you cannot be authenticated!");
 } else {
 return parent::start();
 }
 }
}

TYPO3 Core APIs - 52

?>

So now only users with client IP numbers in the 192.168.*.* series will gain access to the backend. If that is the case, notice
how the parent start() method is called and any result is returned. Thus your overriding method is a wrapped for the original.
Brilliant, right!

Here's another one:

<?php

class ux_t3lib_TCEforms extends t3lib_TCEforms {
 function formWidth($size=48,$textarea=0) {
 $size=round($size*1.5);
 return parent::formWidth($size,$textarea);
 }
 function printPalette($palArr) {
 reset($palArr);
 while(list($k)=each($palArr)) {
 $palArr[$k]["NAME"] = strtoupper($palArr[$k]["NAME"]);
 }
 return parent::printPalette($palArr);
 }
}

?>

... and configured in localconf.php as this:
$TYPO3_CONF_VARS["BE"]["XCLASS"]["t3lib/class.t3lib_tceforms.php"]

=PATH_typo3conf."class.ux_myTCEformsExtension.php";

The result is this; Normally the “General options” palette of the forms in the backend looks like this:

But the extensions does two things: 1) All formfields have their width multiplied with 1.5 so they are wider, 2) the titles of the
palette-fields are converted for uppercase. Looks like this:

So as you see you can do really stupid details - in fact almost any extension.

Warnings
There are a few warnings about using XCLASS extensions:

● Avoid using XCLASS extensions in your (public) extensions!
A PHP class can only be extended by one extension class at a time. Thus, having two extension classes set up, only the
latter one will be enabled. There is no way to work around this technologically in PHP. However "t3lib_div::makeInstance
()" supports "cascaded" extension classes, meaning that you can do "ux_ux_someclass" which will extend
"ux_someclass" but this requires an internal awareness of the extension class "ux_someclass" in the first place.
The conclusion is that XCLASS extensions are best suited for project development where you need a quick hack of
something in the core which should still stay backwards compatible with TYPO3 core upgrades.

● Check if child classes are instantiated
Quite often people have been confused about extending for instance the "tslib_menu" class when they want to add a
feature for "TMENU". But actually the class to extend is "tslib_tmenu" which is an extension of "tslib_menu". So make
sure you are extending the right class name (and always make sure your extension class is included also).

● Strange opcode caching behaviours when you upgrade TYPO3 core

TYPO3 Core APIs - 53

When you upgrade the TYPO3 core and you have an extension which extends a core class, the upgraded core
underneath might not be detected by opcode caches. In particular PHP-Accelerator is known for this behaviour producing
"undefined function...." errors. The solution is: Always clear "/tmp/php_a_*" files and restart your webserver after
upgrading source.

Various examples
Introduction
The follow pages will present some examples of how you can use the APIs of core libraries. Remember, ultimately the source
is the documentation and the only point here is to show examples. Whenever you would like to use core features that are not
shown here you should search in the core and system extensions for implementations that can work as an example for you.

Debugging with debug()
A very common tool used by TYPO3 developers is the debug() function. It basically prints out the content of a variable in a
nicely formatted table. There are extensions available which extends the view from the debug() function to something more
fancy. Here I will just present the basic version.

Use the debug() function whenever you want to look "inside" an array or parameters passed to a user processing function.
Usually it makes it very easy to understand the parameters. For instance, lets say you call a script with the GET parameter
string "?id=123&test[key]=A&test[key2]=B". How will the GET vars look to your application inside? Well, using the debug
function makes that easy:
debug(t3lib_div::_GET(),'GET variables:');

The output in the browser will look like:

Notice that the debug() function is a wrapper for t3lib_div::debug() and the difference is that debug() (defined in
"t3lib/config_default.php") will only output information if your IP addresse is within a certain range typical for internal
networks.

Rendering page trees
In your backend modules you might like to show information or perform processing for a part of the page tree. There is a
whole family of libraries in the core for making trees from records, static page trees or page trees that can be browsed
(open/close nodes).

In this simple example I will show how to get the HTML for a static page tree, using the class "t3lib_pageTree" (child of
"t3lib_treeView"). The output will look like this (missing the normal TYPO3 styles though):

The PHP code that generates this looks like:
 1: require_once(PATH_t3lib.'class.t3lib_pagetree.php');
 2:
 3: // Initialize starting point of page tree:
 4: $treeStartingPoint = 1135;

TYPO3 Core APIs - 54

 5: $treeStartingRecord = t3lib_BEfunc::getRecord('pages', $treeStartingPoint);
 6: $depth = 2;
 7:
 8: // Initialize tree object:
 9: $tree = t3lib_div::makeInstance('t3lib_pageTree');
 10: $tree->init('AND '.$GLOBALS['BE_USER']->getPagePermsClause(1));
 11:
 12: // Creating top icon; the current page
 13: $HTML = t3lib_iconWorks::getIconImage('pages', $treeStartingRecord, $GLOBALS['BACK_PATH'],
'align="top"');
 14: $tree->tree[] = array(
 15: 'row' => $treeStartingRecord,
 16: 'HTML'=>$HTML
 17:);
 18:
 19: // Create the tree from starting point:
 20: $tree->getTree($treeStartingPoint, $depth, '');
 21: #debug($tree->tree);
 22:
 23: // Put together the tree HTML:
 24: $output = '
 25: <tr bgcolor="#999999">
 26: <td>Icon / Title:</td>
 27: <td>Page UID:</td>
 28: </tr>';
 29: foreach($tree->tree as $data) {
 30: $output.='
 31: <tr bgcolor="#cccccc">
 32: <td nowrap="nowrap">'.$data['HTML'].htmlspecialchars($data['row']['title']).'</td>
 33: <td>'.htmlspecialchars($data['row']['uid']).'</td>
 34: </tr>';
 35: }
 36:
 37: $output = '<table border="0" cellspacing="1" cellpadding="0">'.$output.'</table>';

● In line 1 the class is included.
Notice how the constant "PATH_t3lib" is used to set the path for "t3lib/".

● Line 4-5 sets up the starting point. You need a page id for that and additionally you must select that page record.
Notice how another important API function, t3lib_BEfunc::getRecord(), is used to get the record array for the page!

● Line 6 defines that the page tree will go 2 levels down from the starting point.

● Line 9-10 initializes the class.
Notice how the BE_USER object is called to get an SQL where clause that will ensure that only pages that are accessible
for the user will be shown in the tree!
Notice how t3lib_div::makeInstance() is used to create the object. This is required by the TYPO3 CGL.

● Line 13-17 sets up the starting point page in the tree. This must be done externally if you would like your tree to include
the root page (which is not always the case).
Notice how line 13 calls the function t3lib_iconWorks::getIconImage() to get the correct icon image for the pages table
record! Also, $GLOBALS['BACK_PATH'] is used to make sure the icon has a correct "back-path" to the location where the
icon is on the server.

● Line 20 renders the page tree from the starting point and $depth levels down (at least 1 level)

● The rendered page tree is stored in a data array inside of the tree object. We need to traverse the tree data to create the
tree in HTML. This gives us the chance to organize the tree in a table for instance. That is very useful if you need to show
additional information for each page.

● Lines 24-28 renders a table row with headings for the tree.

● Lines 29-35 traverses the tree data and for each element a table row will be rendered with the icon/title and an
additional cell containing the uid.

● Line 37 wraps the table rows in a table tag.

Local extensions of the page tree classes
If you search in the source for other places where this class is used you will often find that the class is extended locally in
those scripts. This is because it is possible to override certain functions that generate for instance the icon or wraps the title in
some way.

Accessing the clipboard
You can easily access the internal clipboard in TYPO3 from your backend modules.
 1: require_once(PATH_t3lib.'class.t3lib_clipboard.php');
 2:
 3: // Clipboard is initialized:
 4: $clipObj = t3lib_div::makeInstance('t3lib_clipboard'); // Start clipboard
 5: $clipObj->initializeClipboard(); // Initialize - reads the clipboard content from the user
session

TYPO3 Core APIs - 55

 6: debug($clipObj->clipData);

● Line 1 includes the clipboard library

● Line 4-5 initializes it.

● Line 6 outputs the content of the internal variables, ->clipData. That will look like what you see below:

This tells us what objects are registered on the "normal" tab (page record with id 1146 in "copy" mode) and the numeric tabs
(can contain more than one element). The current clipboard (Pad 2 active) looks like this:

The correct way of accessing clipboard content is to the method, elFromTable(), in the clipboard object.
 debug($clipObj->elFromTable('_FILE'),'Files available:');
 debug($clipObj->elFromTable('pages'),'Page records:');
 $clipObj->setCurrentPad('normal');
 echo 'Changed to "normal" pad...';
 debug($clipObj->elFromTable('_FILE'),'Files available:');
 debug($clipObj->elFromTable('pages'),'Page records:');

Here we first try to get all files and then all page records on the current pad (which is pad 2). Then we change to the "Normal"
pad, call the elFromTable() method again and output the results. The output shows that in the first attempt we get the list of
files but no page records while in the second attempt after having changed to the normal pad we will get no files but the page
record on the normal pad in return:

TYPO3 Core APIs - 56

Setting elements on the clipboard
This is too complicated to describe in detail. The following codelisting is from the Web > List module where selections for the
clipboard is posted from a form and registered.
 // Clipboard actions are handled:
$CB = t3lib_div::_GET('CB'); // CB is the clipboard command array
if ($this->cmd=='setCB') {
 // CBH is all the fields selected for the clipboard, CBC is the checkbox fields which were
checked. By merging we get a full array of checked/unchecked elements
 // This is set to the 'el' array of the CB after being parsed so only the table in question is
registered.
 $CB['el'] = $dblist->clipObj->cleanUpCBC(array_merge(t3lib_div::_POST('CBH'),t3lib_div::_POST
('CBC')),$this->cmd_table);
}
if (!$this->MOD_SETTINGS['clipBoard']) $CB['setP']='normal'; // If the clipboard is NOT shown, set
the pad to 'normal'.
$dblist->clipObj->setCmd($CB); // Execute commands.
$dblist->clipObj->cleanCurrent(); // Clean up pad
$dblist->clipObj->endClipboard(); // Save the clipboard content

Adding Context Sensitive Menu items
When the CSM is being generated in the "alt_clickmenu.php" script an array with the elements is created. Before the array is
passed over to the final rendering function that will create the menu HTML, the array will be passed in turns to external
processing scripts. These scripts are configured in this global array:
$GLOBALS['TBE_MODULES_EXT']['xMOD_alt_clickmenu']['extendCMclasses'];

Each script will then have a chance to manipulate the content of the array and add/remove items as the script wants. This is
what makes it possible to add custom options to CSM.

The extensions "extra_page_cm_options" adds a lot of CSM options. The extension has an "ext_tables.php" file and it
contains code that adds an entry in the array mentioned above:

<?php
if (!defined ('TYPO3_MODE')) die ('Access denied.');
if (TYPO3_MODE=='BE') {
 $GLOBALS['TBE_MODULES_EXT']['xMOD_alt_clickmenu']['extendCMclasses'][]=array(
 'name' => 'tx_extrapagecmoptions',
 'path' => t3lib_extMgm::extPath($_EXTKEY).'class.tx_extrapagecmoptions.php'
);
}
?>

The value of the "path" key is pointed to the absolute path of the class file that contains code for manipulation of the CSM
array. This file must contain a class by the name of "name" and inside that class a "main()" method that will be called for
manipulation. The basic skeleton looks like this:

/**
 * Class, adding extra context menu options
 *
 * @author Kasper Skaarhoj <kasper@typo3.com>
 * @package TYPO3
 * @subpackage tx_extrapagecmoptions
 */
class tx_extrapagecmoptions {
 /**
 * Adding various standard options to the context menu.
 * This includes both first and second level.
 *
 * @param object The calling object. Value by reference.
 * @param array Array with the currently collected menu items to show.
 * @param string Table name of clicked item.
 * @param integer UID of clicked item.
 * @return array Modified $menuItems array
 */
 function main(&$backRef,$menuItems,$table,$uid) {
 global $BE_USER,$TCA,$LANG;
 $localItems = array(); // Accumulation of local items.
 ...
 $menuItems = array_merge($menuItems,$localItems);
 return $menuItems;
 }
 }
}

The "extra_page_cm_options" is a slightly special since it produces additional CSM elements by calls back to the parent
object where rendering functions exists. This is due to historical reasons. Better examples of handcrafted menu items can be
found in extensions such as "templavoila" (1st level additions for specific table) and "impexp" (2nd level addition). Finally, the

TYPO3 Core APIs - 57

best way to initiate adding elements is using the Kickstarter Wizard which contains an options for creating CSMs:

Implementing Context Sensitive Menus
If you want to implement a CSM for an element in your own backend modules you have to do two things:

● Include standard JavaScript and HTML code in the HTML document for all CSM instances.

● Wrap the icon / element title with a link that opens the CSM.

The standard JavaScript and HTML can be fetched from the backend document template object. In a typical backend module
environment this object is available as $this->doc and these four lines will do the trick:
 1: // Setting up the context sensitive menu:
 2: $CMparts = $this->doc->getContextMenuCode();
 3: $this->doc->bodyTagAdditions = $CMparts[1];
 4: $this->doc->JScode.=$CMparts[0];
 5: $this->doc->postCode.= $CMparts[2];

These lines must be executed before calling "$this->doc->startPage()".

● Line 2 asks the template object to generate the standard content. It is returned in an array.

● Line 3 adds event handlers for the <body> tag:

onmousemove="GL_getMouse(event);" onload="initLayer();"

● Line 4 adds JavaScript functions in the <head> of the HTML output

● Line 5 adds the <div> layers in the bottom of the page:

<div id="contentMenu0" style="z-index:1; position:absolute;visibility:hidden"></div>
<div id="contentMenu1" style="z-index:2; position:absolute;visibility:hidden"></div>

TYPO3 Core APIs - 58

CSM for database elements
Linking icons to open the CSM is easy:
 // Get icon with CSM:
$icon = t3lib_iconworks::getIconImage('tx_templavoila_datastructure',$row,$GLOBALS['BACK_PATH'],'
align="top"');
$content.= $this->doc->wrapClickMenuOnIcon($icon,'tx_templavoila_datastructure',$row['uid'],1);

In this example the first line creates an tag with the icon of a record from the table "tx_templavoila_datastructure". The
variable $row must be the record array of an element from this database table.

The second line wraps the icon ($icon) in a link that will open the CSM over it. This is done by calling
"template::wrapClickMenuOnIcon()" with $icon HTML, table name and element uid. The fourth argument is a boolean you
should set if your script is shown in the list frame of the backend. This will tell "alt_clickmenu.php" which generates the HTML
content that it should be written back to the list frame and not the navigation frame for instance.

Result:

CSM for files
Activating a CSM for a file is also easy. As for database elements it requires that the standard content is added to the HTML
document. From that point you just call the same function, "template::wrapClickMenuOnIcon()" but set the second argument
to the absolute path of the file (and keep the third argument, the uid, blank).

$GLOBALS['SOBE']->doc->wrapClickMenuOnIcon($theIcon,$path);

Notice, that in this case the document template object used is the global variable $SOBE which is normally available in
backend modules as well. You might also use the default instance found in $TBE_TEMPLATE.

For more information see the inline documentation of the function wrapClickMenuOnIcon(). It is found in the file
"template.php" in the typo3/ folder.

Parsing HTML: t3lib_parsehtml
This class is very handy for various processing needs of HTML. In the future it might be obsolete if the "tidy" extension
becomes standard in PHP but for now there are no native features in PHP which lets us parse HTML.

Extracting blocks from an HTML document
In the first example it is shown how we can extract parts of an HTML document.

 1: require_once(PATH_t3lib.'class.t3lib_parsehtml.php');
 2:
 3: $testHTML = '
 4: <DIV>
 5:
 6: <p>Line 1</p>
 7: <p>Line <B class="test">2</p>
 8: <p>Line <i>3</i></p>
 9:
 10:

 11: <TABLE>
 12: <tr>
 13: <td>Another line here</td>
 14: </tr>
 15: </TABLE>
 16: </div>
 17: Text outside div tag
 18: <table>
 19: <tr>

TYPO3 Core APIs - 59

 20: <td>Another line here</td>
 21: </tr>
 22: </table>
 23: ';
 24:
 25: // Splitting HTML into blocks defined by <div> and <table> tags
 26: $parseObj = t3lib_div::makeInstance('t3lib_parsehtml');
 27: $result = $parseObj->splitIntoBlock('div,table',$testHTML);
 28: debug($result,'Splitting by <div> and <table> tags');
 29:

● Line 1 includes the library.

● Line 3-23 loads the HTML sample code into a variable.

● Line 36 creates an instance of the parser-class.
Notice how t3lib_div::makeInstance() is used (required).

● Line 27 splits the HTML content into an array dividing it by <div> or <table> tags.

● Line 28 outputs the result array with the debug() function:

As you can see the HTML source has been divided so the <div> section and the <table> is found in key 1 and 3. The keys of
the extracted content is always the odd keys while the even keys are the "outside" content.

Notice that the table inside of the <div> section was not "found". So when you split content like this you get only elements on
the same block-level in the source. You have to traverse the content recursively to find all tables - or just split on <table> only
(which will not give you tables nested inside of tables though).

Extracting single tags
You can split the content by tag as well. This is done in the next example. Here all and
 tags are found:

 30: // Splitting HTML into blocks defined by and
 tags
 31: $result = $parseObj->splitTags('img,br',$testHTML);
 32: debug($result,'Extracting and
 tags');
 33:

Line 31 performs the splitting operation. This is the output:

TYPO3 Core APIs - 60

Again, all the odd keys in the array contains the tags that were found. If you wanted to do processing on this content you just
traverse the array, process all odd keys and implode the array again. A code listing for that might look like this:
foreach($result as $intKey => $HTMLvalue) {
 // Find all ODD keys:
 if ($intKey%2) {
 $result[$intKey] = '--'.$result[$intKey].'--';
 }
}
$newContent = implode('',$result);

Cleaning HTML content
You can also do processing on the HTML content by the HTMLcleaner() method. This code listings shows a basic example of
how you can configure it. There are a lot of features hidden in the $tagCfg array and you should refer to the inline
documentation of the method in the class.
 34: // Cleaning HTML:
 35: $tagCfg = array_flip(explode(',','b,img,div,br,p'));
 36: $tagCfg['b'] = array(
 37: 'nesting' => 1,
 38: 'remap' => 'strong',
 39: 'allowedAttribs' => 0
 40:);
 41: $tagCfg['p'] = array(
 42: 'fixAttrib' => array(
 43: 'class' => array(
 44: 'set' => 'bodytext'
 45:)
 46:)
 47:);
 48: $result = $parseObj->HTMLcleaner($testHTML, $tagCfg, FALSE, FALSE, array('xhtml' => 1));
 49: debug(array($result),'Cleaning to XHTML, removing non-allowed tags and attributes');

● Line 35 initializes the $tagCfg array by setting the five allowed tags as keys. Only these tag names are allowed! All others
are removed (HTMLcleaner() can be configured to keep all unknown tags though).

● Line 36-40 configures additional options for the "b" tag. First of all correct nesting is required. This means that the single
 tag in one of the paragraphs will be removed. Then the "remap" key is set which means that all occurencies of
tags will be substituted with tags instead. Finally the allowed attributes are set to false which means that any
attributes set for tags are removed.

● Line 41-47 configures additional options for the "p" tag. In this case it just hardcodes that the attribute "class" must exist
and it must have the value "bodytext".

● Line 48 calls the HTMLcleaner() method - and notice the extra options being set where "xhtml" cleaning is enabled. This
will convert all tag an attribute names to lowercase and "close" tags like and
 to <img.../> and

This is the output:

TYPO3 Core APIs - 61

Advanced call back processing
This code listing shows how you can register call back functions for recursive processing of an HTML source:

 1: class user_processing {
 2: function process($str) {
 3: $this->parseObj = t3lib_div::makeInstance('t3lib_parsehtml_proc');
 4:
 5: $outStr = $this->parseObj->splitIntoBlockRecursiveProc(
 6: 'div|table|blockquote|caption|tr|td|th|h1|h2|h3|h4|h5|h6|ol|ul',
 7: $str,
 8: $this,
 9: 'callBackContent',
 10: 'callBackTags'
 11:);
 12:
 13: return $outStr;
 14: }
 15:
 16: function callBackContent($str,$level) {
 17: if (trim($str)) {
 18:
 19: // Fixing <P>
 20: $pSections = $this->parseObj->splitTags('p', $str);
 21: foreach($pSections as $k => $v) {
 22: $pSections[$k] = trim(ereg_replace('[[:space:]]+',' ',$pSections[$k]));
 23: if (!($k%2)) {
 24:
 25: if ($k && !strstr(strtolower($pSections[$k]), '</p>')) {
 26: $pSections[$k] = trim($pSections[$k]).'</p>';
 27: }
 28:
 29: $pSections[$k].=chr(10);
 30: }
 31: }
 32: $str = implode('',$pSections);
 33: }
 34:
 35: if (trim($str)) {
 36: $str = $this->parseObj->indentLines(trim($str),$level).chr(10);
 37: } else {
 38: $str = trim($str);
 39: }
 40:
 41: return $str;
 42: }
 43:
 44: function callBackTags($tags,$level) {
 45:
 46: if (substr($tags['tag_name'],0,1)=='h') {
 47: $tags['tag_end'].=chr(10);
 48: $tags['content'] = trim($tags['content']);
 49: // Removing the <hx> tags if they content nothing when tags are stripped:
 50: if (!strlen(trim(strip_tags($tags['content'])))) {
 51: $tags['tag_start'] = $tags['tag_end'] = '';
 52: $tags['add_level'] = 0;
 53: $tags['content'] = '';
 54: return $tags;
 55: }
 56: } elseif ($tags['tag_name']=='div' || $tags['tag_name']=='blockquote') {
 57: $tags['tag_start'] = $tags['tag_end'] = '';
 58: $tags['add_level'] = 0;

TYPO3 Core APIs - 62

 59: } else {
 60: $tags['tag_start'] = $this->parseObj->indentLines(trim($tags['tag_start']),$level).chr
(10);
 61: $tags['tag_end'] = $this->parseObj->indentLines(trim($tags['tag_end']),$level).chr
(10);
 62: }
 63: return $tags;
 64: }
 65: }

In the method "process()" processing is started. Like when splitting HTML content you define a list of tags to split by. Each of
these will be processed by the call back functions "callBackContent" and "callBackTags" for processing of both the content
between the splitted tags and the tags themselves.

Notice how it is all within the same class which is a requirement for the call back functions.

I'll not explain this listing in further detail. Explore it yourself if you are interested in call back processing of HTML sources.

Links to edit records
Quite often in your backend modules you might like to create a link to edit a record. This is easily done with an API function
call to t3lib_BEfunc::editOnClick(). This script will create an onclick-JavaScript event linking you to the "alt_doc.php" script in
the "PATH_typo3" directory.

All you need to do is prepare GET parameters for the "alt_doc.php" script. Please look inside of "alt_doc.php" for more details
of possible GET vars you can use and what they mean. In this example I have shown the most typical options.

The result of the code listing will be three links like these:

The code listing looks like this:

 1: $editUid = 1135;
 2: $editTable = 'pages';
 3:
 4: // Edit whole record:
 5: $params = '&edit['.$editTable.']['.$editUid.']=edit';
 6: $output.= '<a href="#" onclick="'.htmlspecialchars(t3lib_BEfunc::editOnClick($params,$GLOBALS
['BACK_PATH'])).'">'.
 7: '<img'.t3lib_iconWorks::skinImg($GLOBALS['BACK_PATH'],'gfx/edit2.gif','width="11"
height="12"').' title="Edit me" border="0" alt="" />'.
 8: 'Edit record '.$editUid.' from the "'.$editTable.'" table'.
 9: '

';
 10:
 11: // Edit only "title" and "hidden" fields from record:
 12: $params = '&edit['.$editTable.']['.$editUid.']=edit&columnsOnly=title,hidden';
 13: $output.= '<a href="#" onclick="'.htmlspecialchars(t3lib_BEfunc::editOnClick($params,$GLOBALS
['BACK_PATH'])).'">'.
 14: 'Edit "title" and "hidden" fields from record '.$editUid.' from the "'.$editTable.'"
table'.
 15: '

';
 16:
 17: // Create new "Content Element" record in PID 1135
 18: $params = '&edit[tt_content]['.$editUid.']=new&defVals[tt_content][header]=New%20Element';
 19: $output.= '<a href="#" onclick="'.htmlspecialchars(t3lib_BEfunc::editOnClick($params,$GLOBALS
['BACK_PATH'])).'">'.
 20: 'Create new Content Element inside page '.$editUid.
 21: '
';

Editing a record
In line 5 you see the basic GET parameter you need to set up to edit a record. You need to know the database table name,
record uid in advance. The syntax is "&edit[tablename][uid]=edit". You can specify as many tables and uids you like and
you will get them all in one single form! The "uid" variable can even be a comma list of uids (short way of editing more
records from the same table at once).

The lines 5-9 produces a link which shows this form:

TYPO3 Core APIs - 63

Editing only a few fields from a record
Lines 11-15 creates the same link but with additional information that only the field names "title" and "hidden" should be
edited! That is done by adding the GET parameters "&columnsOnly=title,hidden". This means the form will look like this:

Creating a form for new elements
Lines 17-21 creates a link which will make a new content element inside the page with "pid" 1135. The syntax for creating
new records is "&edit[table_name_of_new_record][pid_reference]=new". The pid reference is special: If it is a negative
value it points to another record from the same table after which the new record should be created. If it is positive or zero it
just points to the page id where the record should be created (as the top element).

Another feature is that a custom default value for the header field is automatically passed along. This is done by the
additional GET parameter "&defVals[tt_content][header]=New%20Element" and you can see how the Header field is pre-
filled with this value below.

The result of the "create new" will be this form.

Support for custom tables in the Page module
In the Web > Page module you can have listings of other records than Content Elements and guest book items. If you want

TYPO3 Core APIs - 64

your custom table to be listed there you can configure it using the $TYPO3_CONF_VARS["EXTCONF"]['cms'] array. This is a
configuration option offered from within the Page module.

In this example the Mininews extension is configured for listing in the Page module. It would look like this (here a single item
only is shown):

The configuration required is as simple as this, put into (ext_)localconf.php:

$TYPO3_CONF_VARS['EXTCONF']['cms']['db_layout']['addTables']['tx_mininews_news'][0] = array(
 'fList' => 'name;title;email;company,image,title',
 'icon' => TRUE
);

The "fList" key value is a list of field names separated first by ";" (semi colon) and then by comma. The semicolon separates
table columns while the comma allows you to list more than one field to be displayed inside a single column.

Adding elements to the Content Element Wizard
The content element wizard helps people to select the most common kinds of content elements in a one-click operation, thus
saving them to know about setting the content element type etc.

The script is a part of the “cms” extension.

TYPO3 Core APIs - 65

Adding elements under the “Plugins” header
If you want to add elements in the wizard under the plugins header there is native support in the script for this.

Basically, what you do is to set content in the global variable $TBE_MODULES_EXT['xMOD_db_new_content_el']
['addElClasses']. The keys in this array must be class names and the values is the absolute path of the class. When the script
is run the class files will be included during initialization. Then, during the building of the array of wizard elements the default
wizard array is passed to the class you have configured through the method proc() in your class.

For details the most easy thing will be to look into the script in the function wizardArray() - this will make it clear to you how it
works.

Example
As an example of how this works from an extension you can take a look at the extension tt_guest. This extension adds itself
in the plugin category by inserting these lines in its ext_tables.php file:

if (TYPO3_MODE=="BE") {
 $TBE_MODULES_EXT["xMOD_db_new_content_el"]["addElClasses"]["tx_ttguest_wizicon"] =
 t3lib_extMgm::extPath($_EXTKEY)."class.tx_ttguest_wizicon.php";
}

In the file class.tx_ttguest_wizicon.php you will find a class looking like this:

/**
 * Class, containing function for adding an element to the content element wizard.
 *
 * @author Kasper Skaarhoj <kasper@typo3.com>
 * @package TYPO3
 * @subpackage tx_ttguest
 */
class tx_ttguest_wizicon {
 /**
 * Processing the wizard-item array from db_new_content_el.php
 *
 * @param array Wizard item array
 * @return array Wizard item array, processed (adding a plugin for tt_guest extension)
 */
 function proc($wizardItems) {
 global $LANG;
 // Include the locallang information.
 $LL = $this->includeLocalLang();
 // Adding the item:
 $wizardItems['plugins_ttguest'] = array(
 'icon'=>t3lib_extMgm::extRelPath('tt_guest').'guestbook.gif',
 'title'=>$LANG->getLLL('plugins_title',$LL),
 'description'=>$LANG->getLLL('plugins_description',$LL),
 'params'=>'&defVals[tt_content][CType]=list&defVals[tt_content][list_type]=3&defVals
[tt_content][select_key]='.rawurlencode('GUESTBOOK, POSTFORM')
);

 return $wizardItems;
 }
 /**
 * Include locallang file for the tt_guest book extension (containing the description and title for
the element)
 *
 * @return array LOCAL_LANG array
 */
 function includeLocalLang() {
 include(t3lib_extMgm::extPath('tt_guest').'locallang.php');
 return $LOCAL_LANG;
 }
}

As you can see this class modifies the wizard array with an additional item. This is how you can also add / modify elements in
the array using this API.

Using custom permission options
TYPO3 (3.7.0+) offers extension developers to register their own permission options to be automatically managed by
TYPO3s user group access lists. The options can be grouped in categories. A custom permission option is always a
checkbox (on/off). The scope of such options is for use in the backend of TYPO3 only.

TYPO3 Core APIs - 66

Registering a header and options
You configure options in the global variable $TYPO3_CONF_VARS['BE']['customPermOptions']. You can read the comment
inside “config_default.php” regarding the syntax of the array.

This example shows how three options are registered under a new category:

$TYPO3_CONF_VARS['BE']['customPermOptions'] = array(
 'tx_coreunittest_cat1' => array(
 'header' => '[Core Unittest] Category 1',
 'items' => array(
 'key1' => array('Key 1 header'),
 'key2' => array('Key 2 header'),
 'key3' => array('Key 3 header'),
)
),

The result is that these options appear in the group access lists like this:

You can also add icons, a description and use references to locallang values. Such a detailed configuration could look like
this (also just an example):
...
'tx_coreunittest_cat2' => array(
 'header' => 'LLL:EXT:coreunittest/locallang_test.php:test_header',
 'items' => array(
 'keyA' => array('Key a header','icon_ok.gif','This is a description....'),
 'keyB' => array
('LLL:EXT:coreunittest/locallang_test.php:test_item','../typo3/gfx/icon_ok2.gif','LLL:EXT:coreunittest/l
ocallang_test.php:test_description'),
 'key3' => array('Key 3 header','EXT:coreunittest/ext_icon.gif'),
)
)
...

Evaluating the options
Checking if a custom permission option is set you simply call this API function in the user object:

$BE_USER->check('custom_options',$catKey.':'.$itemKey)

$catKey is the category in which the option resides. From the example above this would be “tx_coreunittest_cat1”

$itemKey is the key of the item in the category you are evaluating. From the example above this could be “key1”, “key2” or
“key3” depending on which one of them you want to evaluated.

The function returns true if the option is set, otherwise false.

Keys in the array
It is good practice to use the extension keys prefixed with “tx_” on the first level of the array. This will help to make sure you
do not pick a key which someone else picked as well!

Also you should never pick a key containing any of the characters “,:|” since they are reserved delimiter characters.

TYPO3 Core APIs - 67

Table Configuration Array, $TCA

Introduction
This chapter of the document aims to describe the global array, $TCA, in TYPO3. The array describes the database tables
that TYPO3 can operate on. Since the database is a central element in TYPO3 this array is a backbone in the system.

The following pages will describe all the features of the $TCA array in details.

What is $TCA?
This global array in TYPO3 defines the editable database tables and the relationship between them and how the fields in
tables are rendered in backend forms and processed in the TCE and so on.

The array is highly extendable through extensions and in fact only four tables are configured by default in TYPO3. These four
tables - those which are required for any TYPO3 installation - is configured in the file "t3lib/stddb/tables.php". The tables are:

• the "pages" table containing the page tree of TYPO3

• the "be_users" table containing backend users

• the "be_groups" table containing backend user groups

• the "sys_filemounts" table containing file mounts for backend users.

All other tables are configured in extensions.

The file "t3lib/stddb/tables.php" contains not only the $TCA definition. You can also find other global core variables defined
there. For instance $PAGES_TYPES, $ICON_TYPES and $LANG_GENERAL_LABELS which are also used in relation to
$TCA but much less important and probably not relavant for you to use. There are more details on these arrays further ahead
in this document.

Extending the $TCA array
This is done by extensions and typically the information added to the table is stored in extension files named
"ext_tables.php". Please see the Extension API description for details about this.

An example could look like this (from the extension "mininews", file "ext_tables.php"):
 1: // Defining a new column for the mininews extension (goes into the tt_content table)
 2: $tempColumns = Array (
 3: "tx_mininews_frontpage_list" => Array (
 4: "exclude" => 1,
 5: "label" => "LLL:EXT:mininews/locallang_db.php:tt_content.tx_mininews_frontpage_list",
 6: "config" => Array (
 7: "type" => "select",
 8: "items" => Array (
 9: Array
("LLL:EXT:mininews/locallang_db.php:tt_content.tx_mininews_frontpage_list.I.0", "0"),
 10: Array
("LLL:EXT:mininews/locallang_db.php:tt_content.tx_mininews_frontpage_list.I.1", "1"),
 11:),
 12:)
 13:),
 14:);
 15:
 16: // Make sure to load all of "tt_content":
 17: t3lib_div::loadTCA("tt_content");
 18:
 19: // ... then add the column for mininews which was defined above:
 20: t3lib_extMgm::addTCAcolumns("tt_content",$tempColumns,1);
 21:
 22: // ... and finally add the new column definition to the list of fields shown for the mininews
plugin:
 23: // (This also removes the presence of the normally shown fields, "layout" and "select_key")
 24: $TCA["tt_content"]["types"]["list"]["subtypes_excludelist"][$_EXTKEY."_pi1"]="layout,select_key";
 25: $TCA["tt_content"]["types"]["list"]["subtypes_addlist"][$_EXTKEY."_pi1"]
="tx_mininews_frontpage_list;;;;1-1-1";
 26:
 27: // Now, define a new table for the extension. Name: "tx_mininews_news"
 28: // Only the "ctrl" section is defined since the rest of the config is in the "tca.php" file,
loaded dynamically when needed.
 29: $TCA["tx_mininews_news"] = Array (
 30: "ctrl" => Array (
 31: "title" => "LLL:EXT:mininews/locallang_db.php:tx_mininews_news",
 32: "label" => "title",
 33: "tstamp" => "tstamp",
 34: "crdate" => "crdate",

TYPO3 Core APIs - 68

 35: "cruser_id" => "cruser_id",
 36: "default_sortby" => "ORDER BY datetime DESC",
 37: "delete" => "deleted",
 38: "enablecolumns" => Array (
 39: "disabled" => "hidden",
 40: "starttime" => "starttime",
 41: "endtime" => "endtime",
 42: "fe_group" => "fe_group",
 43:),
 44: "dynamicConfigFile" => t3lib_extMgm::extPath($_EXTKEY)."tca.php",
 45: "iconfile" => t3lib_extMgm::extRelPath($_EXTKEY)."icon_tx_mininews_news.gif",
 46:),
 47: "feInterface" => Array (
 48: "fe_admin_fieldList" => "hidden, starttime, endtime, fe_group, datetime, title, teaser,
full_text, front_page",
 49:)
 50:);
 51:
 52: // Then, make sure records from this table is allowed on regular pages:
 53: t3lib_extMgm::allowTableOnStandardPages("tx_mininews_news");
 54: // ... and allowed to be added in the "Insert Record" content element type:
 55: t3lib_extMgm::addToInsertRecords("tx_mininews_news");

Here line 1-25 is about adding a column to the table "tt_content" which was in fact added by the extension "cms"

Then line 27-55 shows how a totally new table is added for the extension "mininews".

Main levels in the $TCA array

The table entries (first level)
On the "first level" of the $TCA array you will find key values which matches with database table names:
$TCA['pages'] = Array (
 ...
);
$TCA['tt_content'] = Array (
 ...
);
$TCA['tx_myext'] = Array (
 ...
);

Here three tables, "pages", "tt_content" and "tt_myext" is shown as examples.

The structure of a table entry (second/third level)
Each table is defined by an array which configures how the system handles the table, both for display and processing in the
backend (the frontend is mostly independant of the TCA except from some features in the [ctrl] section).

On this "second level" (configuring a single table) the structure is as follows:

$TCA['tablename'] = Array (
 'ctrl' => Array(

),
 'interface' => Array(

),
 'feInterface' => Array(

),
 'columns' => Array(
 'fieldname_1' => Array(

),
 'fieldname_2' => Array(

),

),
 'types' => Array(

),
 'palettes' => Array(

),
);

(The bold/italic strings in blacks indicate that here actual table/fieldnames are used as keys)

This table describes each of the sections. Over the next pages you will see each section described in detail with all features.

TYPO3 Core APIs - 69

Section Description
ctrl The table

The "ctrl" section contains properties for the table in general.
These are basically devided in two main categories;
• properties which affect how the table is displayed and handled in the backend interface .

This includes which icon, what name, which columns contains the title value, which column defines the type value
etc.

• properties which determines how it is processed by the system (TCE).
This includes publishing control, "deleted" flag, if the table can only be edited by admin-users, may only exist in the
tree root etc.

interface The backend interface handling
The "interface" section contains properties related to the tables display in the backend, mostly the Web>List module.

feInterface Frontend Editing
The "feInterface" section contains properties related to Front End editing of the table, mostly related to the feAdmin_lib.
Is depricated in the sense that it will still exist, but will not be (and should not be) extended further.

columns The individual fields
The "columns" section contains configuration for each table field (also called "column") which can be edited by the
backend.
The configuration includes both properties for the display in the backend as well as the processing of the submitted
data.
Each field can be configured as a certain "type" (eg. checkbox, selector, input field, text area, file or db-relation field,
user defined etc.) and for each type a separate set of additional properties applies. These properties are clearly
explained for each type.

types The form layout for editing
The "types" section defines how the fields in the table (configured in the "columns" section) should be arranged inside
the editing form; in which order, with which "palettes" (see below) and with which possible additional features applied.

palettes The palette fields order
A palette is just a list of fields which will be arranged horizontally side-by-side. But the main idea is that these fields can
be displayed in the top-frame of the backend interface on request so they don't display inside the main form. In this way
they are kind of hidden fields which are brought forth either by clicking an icon in the main form or (more usually) when
you place the cursor in a form field of the main form).

Glossary
Before you read on, lets just refresh the meaning of a few concepts mentioned on the next pages:

• TCE: Short for "TYPO3 Core Engine". Also referred to as "TCEmain". This class (class.t3lib_tcemain) should ideally
handle all updates to records made in the backend of TYPO3. The class will handle all the rules which may be applied to
each table correctly. It will also handle logging, versioning, history/undo features, copying/moving/deleting etc.

• "list of": Typically used like "list of fieldnames". Whenever "list of" is used it means a list of strings separated by comma
and with NO space between the values.

• field name: The name of a field from a database table. Another word for the same is "column" but it is used more rarely,
however meaning the exact same thing when used.

• record type: A record can have different types, expressed by the value of a certain field in the record. This field is defined
by the [ctrl][type] value and it affects also which fields ("types"-configuration) is used to display possible form fields.

• (LS): "LanguageSplitted" - meaning that

• the value can be a plain string which will be splitted by the "|" token where each part corresponds to a language as
found in the constant "TYPO3_languages" (obsolete concept! Depricated!)

• or the string can fetch a value from a locallang file by prefixing the string with "LLL:" (please see the description of [ctrl]
[title] for details).

The [ctrl] section vs. the other sections
In almost the whole system the [ctrl] section of the $TCA entry for a table plays a crucial role. For all tables configured in
$TCA this section must exist in $TCA. The other sections (except [feInterface]) can optionally be stored in another file.

This feature allows scalability since hundreds of tables can be configured with their complete [ctrl]-sections while leaving a
relatively small memory footprint since they don't define all the other sections by default (eg. the "columns" section can group
quite large!). Please see the [ctrl]-property "dynamicConfigFile" and the section "Loading the full $TCA dynamically" for
details.

However this means that:

• You can always depend on accessing information in the [ctrl] section, eg. $TCA['your_table_name']['ctrl']

• But before you can depend on information in any other section (except [feInterface]) you should:

• 1) Call t3lib_loadTCA('your_table_name'); (This will dynamically load the full content of the TCA section for the table)

• 2) Then access the information, eg. $TCA['your_table_name']['columns']['your_field_name']

TYPO3 Core APIs - 70

See more information in the section about handling after the $TCA array reference section.

$TCA array reference
['ctrl'] section
The "ctrl" section contains properties for the table in general.

These properties are basically divided into two main categories:

• properties which affect how the table is displayed and handled in the backend interface .
This includes which icon, what name, which columns contains the title value, which column defines the type value etc.

• properties which determines how it is processed by the system (TCE).
This includes publishing control, "deleted" flag, if the table can only be edited by admin-users, may only exist in the tree
root etc.

Reference for the ['ctrl'] section:
Key Datatype Description Scope

title string
(LS)

Contains the system name of the table. Is used for display in the backend.

For instance the "tt_content" table is of course named "tt_content" technically. However in the
backend display it will be shown as "Pagecontent" when the backend language is english.
When another language is chosen, like Danish, then the label "Sideindhold" is shown instead.
This value is managed by the "title" value.

You can insert plain text values, you can also add values for many languages by the obsolete
concept of "language-splitting" (where you separate each language label by a vertical bar, "|")
but please don't! In modern times it is always recommended to put the label values into an
external file/array (local_lang files) and let the "title" field contain a reference to that value.
See the example below. You should also have a look at the localization section in "Inside
TYPO3"

Example:
$TCA['static_template'] = Array (
 'ctrl' => Array (
 'label' => 'title',
 'tstamp' => 'tstamp',
 'title' => 'LLL:EXT:cms/locallang_tca.php:static_template',

In the above example the "LLL:" prefix tells the system to look up a label from the localization
engine. The next prefix "EXT:cms" will look for the data source in the extension with the key
"cms". In that extension the file "locallang_tca.php" will contain a $LOCAL_LANG array inside
of which the label key "static_template" should contain the value, one for each language
TYPO3 offers.

Display

label string
(fieldname)

Required!
Points to the fieldname of the table which should be used as the "title" when the record is
displayed in the system.

Display

label_alt string Commalist of fieldnames, which are holding alternative values to the value from the field
pointed to by "label" (see above) if that value is empty. May not be used consistently in the
system, but should apply in most cases.

Example:
$TCA['tt_content'] = Array (
 'ctrl' => Array (
 'label' => 'header',
 'label_alt' => 'subheader,bodytext',

See t3lib_BEfunc::getRecordTitle()
Also see "label_alt_force"

Display

label_alt_force boolean If set, then the "label_alt" fields are always shown in the title separated by comma.
See t3lib_BEfunc::getRecordTitle()

Display

TYPO3 Core APIs - 71

Key Datatype Description Scope
type string

(fieldname)
Fieldname, which defines the "record type".
The value of this field determines which one of the 'types' configurations are used for
displaying the fields in the TCEforms. It will probably also affect how the record is used in the
context where it belongs.

The most widely known usage of this feature is the Content Elements where the "Type:"
selector is defined as the "type" field and when you change that selector you will also get
another rendering of the form:

It is also used by the "doktype" field in the "pages" table.

Example:
Here we will create an imaginary example to explain what the "type" property does. Imagine a
table with four user editable fields:
• One field, "displaytype", is a selectorbox with two values: "1" with the label "Regular

display" and "2" with the label "Regular display + link"
• Then three other fields, "title", "description" and "title_link"

We want the form in the backend to display only the fields "title" and "description" when the
"displaytype" selector has the value "1" ("Regular display"). When the selector is set to value
"2" ("Regular display + link") we want the form to show all three fields.

This is done by first setting the "displaytype" field as the type field in [ctrl] section:

 'type' => 'displaytype',

Then in the "types" section of the $TCA configuration (see later) we set up the fields for
display:

 'types' => Array (
 '1' => Array('showitem' => 'title, description'),
 '2' => Array('showitem' => 'title, description, title_link')
)

The backend will select the "showitem" list for ...["types"][2] when the field "displaytype"
contains the value two. And likewise when "displaytype" is 1, then the first list is used to
display fields in the backend.

Display
/ Proc.

requestUpdate string
(list of
fieldnames)

This is a list of fields additional to the type field which will request the user to update the form
due to some content having change and which til affect the layout. For example you could add
any of the subtype fields you might have configured.

Proc.

TYPO3 Core APIs - 72

Key Datatype Description Scope
iconfile string Pointing to the icon file to use for the table.

Icons should be dimensioned 18x16 pixels (the last two right-most pixel columns in the width
should preferably be empty) and of the GIF or PNG file type.

The value of the option can be any of these:
• If there is a slash (/) in the value: It must be a relative filepath pointing to the icon file

relative to the typo3/ (admin) folder. You may start that path with '../' if you like to get your
icon from a folder in the PATH_site path.
For extensions, see example below.

• If there is just a filename: It must exist in the "typo3/gfx/i/" folder.
• If empty/not given: The default icon for a table is defined as "gfx/i/[table_name].gif".

(This is an obsolete approach to use since the content of the "gfx/i/" folder should not be
changed.)

Example: How to assign an icon from an extension
In the ext_tables.php files of your extension you normally define the "ctrl" section of the tables
you have added to the system. Here you can add a local icon from the extension like this:

$TCA["tx_mininews_news"] = Array (
 "ctrl" => Array (
 "iconfile" => t3lib_extMgm::extRelPath($_EXTKEY).
"icon_tx_mininews_news.gif",

Display

typeicon_column string
(fieldname)

Fieldname, whose value decides alternative icons for the table (The default icon is the one
defined with the 'iconfile' value.)
An icon in the 'typeicons' array may override the default icon if an entry is found for the key
having the value of the field pointed to by "typeicon_column" (this feature).
Notice: These options ("typoicon_column" and "typeicons") does not work for the pages-table,
which is configured by the PAGES_TYPES array.
Related "typeicons"

This feature is used by for instance the "tt_content" table (Content Elements) where each type
of content element has its own icon.

Example:
See "typeicons"

Display

typeicons array (See "typeicon_column")

Example of configuration (from the "tt_content" table):

 'typeicon_column' => 'CType',
 'typeicons' => Array (
 'header' => 'tt_content_header.gif',
 'textpic' => 'tt_content_textpic.gif',
 'image' => 'tt_content_image.gif',
 'bullets' => 'tt_content_bullets.gif',
 'table' => 'tt_content_table.gif',
 'splash' => 'tt_content_news.gif',
 'uploads' => 'tt_content_uploads.gif',
 'multimedia' => 'tt_content_mm.gif',
 'menu' => 'tt_content_menu.gif',
 'list' => 'tt_content_list.gif',
 'mailform' => 'tt_content_form.gif',
 'search' => 'tt_content_search.gif',
 'login' => 'tt_content_login.gif',
 'shortcut' => 'tt_content_shortcut.gif',
 'script' => 'tt_content_script.gif',
 'div' => 'tt_content_div.gif',
 'html' => 'tt_content_html.gif'
),

Display

TYPO3 Core APIs - 73

Key Datatype Description Scope
thumbnail string

(fieldname)
Fieldname, which contains the value for any thumbnails of the records .
This could be a type of the "group" type containing a list of file names.

Example:
For the "tt_content" table this option points to the field "image" which contains the list of
images that can be attached to the content element:
 'thumbnail' => 'image',

The effect of the field can be see in listings in eg. the "List" module:

(You might have to enable "Show Thumbnails by default" in the Setup module first to see this
display).

Display

selicon_field string
(fieldname)

Fieldname, which contains the thumbnail image used to represent the record visually
whereever it is shown in TCEforms as a foreign reference selectable from a selectorbox.
Only images of the ordinary webformat, like gif,png,jpeg,jpg, is allowed. No scaling is done.

You should consider this a feature where you can attach an "icon" to a record which is
typically selected as a reference in other records. For example a "category". In such a case
this field points out the icon image which will then be shown. This feature can thus enrich the
visual experience of selecting the relation in other forms.
The feature is seldomly used.

Related: "selicon_field_path"

Display

selicon_field_path string The path prefix of the value from 'selicon_field'. This must be similar to the upload_path of
that field (and thereby redundant).

Display

sortby string
(fieldname)

Fieldname, which is used to manage the order the records.
The field will contain an integer value which positions it at the correct position between other
records from the same table on the current page.

NOTICE: The field should not be editable by the user since the TCE will manage the content
automatically in order to manage the order of records.

This feature is used by eg. the "pages" table and "tt_content" table (Content Elements) in
order to control the manually determined listing order of those records.
Typically the fieldname "sorting" is dedicated to this feature.

Related: "default_sortby"

Display
/Proc.

default_sortby string If a fieldname for "sortby" is defined, then this is ignored.
Otherwise this is used as the 'ORDER BY' statement to sort the records in the table when
listed in TBE.

A few examples:

"default_sortby" => "ORDER BY title",
"default_sortby" => "ORDER BY tstamp DESC",
"default_sortby" => "ORDER BY parent,crdate DESC",

Display

TYPO3 Core APIs - 74

Key Datatype Description Scope
mainpalette integer

(pointing to
palette key)

Points to the palette-number that should always be shown in the bottom of the TCEform.

Example:
For many records you can find the last section of the form looking something like this:

This box displays the fields from the "main palette". In the case above (table: "tt_content") the
main palette is "1" configured like this in $TCA for "tt_content":

'palettes' => Array (
 '1' => Array('showitem' => 'hidden,starttime,endtime,fe_group'),

And in the "ctrl" section it looks like this:

 'mainpalette' => '1',

Display

canNotCollapse boolean If set, then the "Show secondary options" check box will not affect this table - no matter what,
all fields and palettes are displayed in the main form at all times. Just like if the check box was
always set.

Display

tstamp string
(fieldname)

Fieldname, which is automatically updated to the current timestamp (UNIX-time in seconds)
each time the record is updated/saved in the system.
Typically the field name "tstamp" is used for the time stamp value.

Example:
This example shows the configuration for the "fe_users" table and how the tstamp, crdate and
cruser_id fields have been configured:

$TCA['fe_users'] = Array (
 'ctrl' => Array (
 'label' => 'username',
 'tstamp' => 'tstamp',
 'crdate' => 'crdate',
 'cruser_id' => 'cruser_id',

Proc.

crdate string
(fieldname)

Fieldname, which is automatically set to the current timestamp when the record is created. Is
never modified again.
Typically the field name "crdate" is used for the time stamp value.

Proc.

cruser_id string
(fieldname)

Fieldname, which is automatically set to the uid of the backend user (be_users) who originally
created the record. Is never modified again.
Typically the field name "cruser_id" is used for the time stamp value.

Proc.

rootLevel [0, 1, -1] Determines where a record may exist in the page tree. There are three options depending on
the value:

• 0 (false): Can only exist in the page tree.
Records from this table must belong to a page (have a positive "pid" field value). Thus
records cannot be created in the root of the page tree (where "admin" users are the only
ones allowed to create records anyways).

• 1 (true): Can only exist in the root.
Records must have a "pid"-field value equal to zero. The consequence is that only admin
can edit this record.

• -1: Can exist in both page tree and root.
Records can belong either to a page (positive "pid" field value) or exist in the root of the
page tree (where the "pid" field value will be 0 (zero))
Notice: that the -1 value will still select foreign_table records for selectox boxes only from
root (pid=0)

Notice: The setting for "rootLevel" is ignored for records in the "pages" table (they are
hardcoded to be allowed anywhere, equal to a "-1" setting of rootLevel)

Proc. /
Display

readOnly boolean Records may not be changed. This makes a table "static".
In TYPO3 the most wellknown static table is "static_template" which contains pre-configured
TypoScript code snippets. But you can also find a number of extensions which contains static
table information like zip-codes, airport codes, country, currency codes etc.

Proc. /
Display

TYPO3 Core APIs - 75

Key Datatype Description Scope
adminOnly boolean Records may be changed only by "admin"-users (having the "admin" flag set).

Examples from the "cms" extension are the tables "sys_template" and "static_template" (the
latter is also "readOnly").

Proc. /
Display

editlock string
(fieldname)

Fieldname, which – if set – will prevent all editing of the record for non-admin users.

The field should be configured as a checkbox type. Non-admins could be allowed to edit the
checkbox but if they set it, they will effectively lock the record so they cannot edit it again –
and they need an Admin-user to remove the lock.

If this feature is used on the pages table it will also prevent editing of records on that page
(except other pages)! Also, no new records (including pages) can be created on the page.

This flag is cleared when a new copy or version of the record is created.

Proc /
Display

delete string
(fieldname)

Fieldname, which indicates if a record is considered deleted or not.
If this feature is used, then records are not really deleted, but just marked 'deleted' by setting
the value of the fieldname to "1". And in turn the whole system must strictly respect the record
as deleted. This means that any SQL query must exclude records where this field is true.

This is a very common feature.

Proc. /
Display

enablecolumns array Specifies which publishing control features are automatically implemented for the table.
This includes that records can be "disabled" or "hidden", have a starting and/or ending time
and be access controlled so only a certain front end user group can access them

In the frontend libraries the enableFields() function automatically detects which of these fields
are configured for a table and returns the proper WHERE clause SQL code for creating select
queries.

There are the keys in the array you can use. Each of the values must be a field name in the
table which should be used for the feature:

"disabled": defining hidden-field of record
"starttime": defining starttime-field of record
"endtime": defining endtime-field of record
"fe_group": defining fe_group-field of record

Notice: In general these fields does not affect the access or display in the backend! They are
primarily related to the frontend. However the icon of records having these features enabled
will normally change as these examples show:

[INSERT IMAGE]

See also the "delete" feature which is related, but is active for both frontend and backend.

Example:
Typically the "enablecolumns" could be configured like this (here for the "tt_content" table):

 'enablecolumns' => Array (
 'disabled' => 'hidden',
 'starttime' => 'starttime',
 'endtime' => 'endtime',
 'fe_group' => 'fe_group',
),

Proc. /
Display

hideAtCopy boolean If set, and the "disabled" field from "enablecolumns" (see below) is specified, then records will
be disabled/hidden when they are copied.

Proc.

prependAtCopy string
(LS)

This string will be prepended the records title field when the record is inserted on the same
PID as the original record (thus you can distinguish them).
Usually the value is something like " (copy %s)" which tells that it was a copy that was just
inserted (The token "%s" will take the copy number).

Proc.

copyAfterDuplFiel
ds

string
(list of
fieldnames)

The fields in this list will automatically have the value of the same field from the 'previous'
record transferred when they are copied or moved to the position after another record from
same table.

Example:
 'copyAfterDuplFields' => 'colPos,sys_language_uid',

Proc.

setToDefaultOnCo
py

string
(list of
fieldnames)

These fields are restored to the default value of the record when they are copied.

Example:
$TCA["sys_action"] = Array (
 "ctrl" => Array (
 "setToDefaultOnCopy" => "assign_to_groups",

Proc.

TYPO3 Core APIs - 76

Key Datatype Description Scope
useColumnsForD
efaultValues

string
(list of
fieldnames)

When a new record is created, this defines the fields from the 'previous' record that should be
used as default values.

Example:
$TCA['sys_filemounts'] = Array (
 'ctrl' => Array (
 'useColumnsForDefaultValues' => 'path,base',

Proc.

is_static boolean This marks a table to be "static".
A "static table" means that it should not be updated for individual databases because it is
meant to be centrally updated and distributed. For instance static tables could contain
country-codes used in many systems.

The foremost property of a static table is that the uid's used are the SAME across systems.
Import/Export of records expect static records to be common for two systems.

Example (also including the features "rootLevel", "readOnly" and "adminOnly" above):

$TCA['static_template'] = Array (
 'ctrl' => Array (
 'label' => 'title',
 'tstamp' => 'tstamp',
 'title' => 'LLL:EXT:cms/locallang_tca.php:static_template',
 'readOnly' => 1, // Prevents the table from being altered
 'adminOnly' => 1, // Only admin, if any
 'rootLevel' => 1,
 'is_static' => 1,

Used
by
import/
export

fe_cruser_id string
(fieldname)

Fieldname, which is used to store the uid of a front-end user if he is created the record
through fe_adminLib

FE

fe_crgroup_id string
(fieldname)

Fieldname, which is used for storing the uid of a fe_group record, where the members of that
record are allowed to edit through fe_adminLib .

FE

fe_admin_lock string
(fieldname)

Fieldname, which points to the fieldname which - as a boolean - will prevent any editing by the
fe_adminLib, if set. Say if the "fe_cruser_id" field matches the current fe_user normally the
field is editable. But with this option, you could make a check-box in the backend that would
lock this option.

FE

languageField string
(fieldname)

Localization access control.
Fieldname, which contains the pointer to the language of the records content. Languages for
a record is defined by an integer pointing to a “sys_language” record (found in the page tree
root).
Backend users can be limited to have edit access for only certain of these languages and if
this option is set, edit access for languages will be enforced for this table.

Pointers to a languages has this value range:
-1 : The record does not represent any specific language. Localization access control is never
carried out for such a record. Typically this is used if the record has content (such as
flexforms) which internally contain localized values – hence making such a flag for the
container record futile.
0 : The default language of the system. Localization access control applies.
Values > 0 : Points to a uid of a sys_language record representing a possible language for
translation. Localization access control applies.

The fieldname pointed to should be a single value selector box (maxitems <=1) saving its
value into an integer field in the database.

Proc /
Display

transOrigPointerFi
eld

string
(fieldname)

Fieldname, which contains the uid of the record which this record is a translation of. If this
value is found being set together with “languageField” then TCEforms will show the default
translation value under the fields in the main form. This is very neat if translators are to see
what they are translating of course...
Must be configured in “columns”, at least as a passthrough type.

Proc /
Display

transOrigPointerT
able

string
(tablename)

Optional table name for the table where record uids in “transOrigPointerField” comes from.
This is needed in very rare applications where the original language is found in another table
of the database. In such cases the field names must match between the tables.
An example of this is the pages table and “pages_language_overlay”.

Proc /
Display

transOrigDiffSourc
eField

string
(fieldname)

Fieldname which will be updated with the value of the original language record whenever the
translation record is updated. This information is later used to compare the current values of
the default record with those stored in this field and if they differ there will be a display in the
form of the difference visually. This is a big help for translators so they can quickly grasp the
changes that happened to the default language text.

The field type in the database should be a large text field (clob/blob).
You don't have to configure this field in the “columns” section of TCA, but if you do, select the
“passthrough” type. That will enable that the undo function also works on this field.

Proc /
Display

TYPO3 Core APIs - 77

Key Datatype Description Scope
versioning boolean If set, versioning is enabled for this table.

In order for versioning to work on a table there are certain requirements; Tables supporting
versioning will have these fields:
● “t3ver_oid” - Pointing back to official in-tree version
● “t3ver_id” - Incremental integer (version number)
● “t3ver_label” - Version label, eg. "1.1.1" or "Christmas edition"
● The fields pid and uid should have "signed" attributes in MySQL (so their content can be

negative!)

Versioning VS. MySQL version incompatibility issue!!!
Versioning does NOT work with MySQL version 3.23.54 but does with 4.0.18. It is not known
now many versions of MySQL the problem impacts.
Symptom is this: After swapping two versions the next autoindex jumps to 2.147.483.647 (one
under the limit for a signed 32 bit integer field)
Reason is: When swapping versions the uid of a record is temporarily negated (13 => -13)
and when the UID is set negative the autoindex is changed for the affected MySQL versions!

Proc.

versioning_follow
Pages

boolean (Only for other tables than “pages”)

If set, content from this table will get copied along when a new version of a page is created.

Proc.

dividers2tabs boolean If set, all “--div--” fieldnames in the types configuration will be interpreted as starting a new tab
in a tab-menu for the record. The second part after “--div--” will be the title of the tab then.

If you place a “--div--” field as the very first element in the types configuration it will just be
used to set the title of the first tab (which is by default “General”).

If you like to place the main palette on its own tab in the end, simply add “--div--” as the very
last field.

Example:
A types configuration for a table looks like this:

"types" => Array (
"0" => Array("showitem" => "--div--;Basis valg, hidden;;1;;1-1-1, title;;;;2-2-2,

type;;;;3-3-3, template, --div--;Frekvens, freq, time1, time2, time3, time4, time5, time6, time7,
time8, --div--;Details, sourceurl, inputparser, position, dailysubpage, newpageishidden,
notify_on_creation_email, logimportsonly")
),

This will render a tab menu for the record where the fields are distributed on the various pads:

Here another tab is activated and another part of the form is shown:

TYPO3 Core APIs - 78

Key Datatype Description Scope
dynamicConfigFile string Reference to the complete $TCA entry content.

Filename of the PHP file which contains the full configuration of the table in $TCA. The [ctrl]
part (and [feInterface] if used) are always mandatory, but the rest may be placed in such a file
in order to limit the amount of memory consumed by the $TCA array (when eg. the columns
definitions are not needed).

The format of the value is as follows:
• If an absolute path: Well, its an absolute path... (this is used for extensions, see example

below).
• If prefixed with "T3LIB:" This indicates that it's position is in t3lib/install/
• By default: The value is a filename relative to "typo3conf/"

Example:
This is the typical configuration in an extension where the file named "tbl.php" contains all
configuration for the "columns", "types" and "palettes":

$TCA["tx_mininews_news"] = Array (
 "ctrl" => Array (
 "dynamicConfigFile" => t3lib_extMgm::extPath($_EXTKEY).
"tca.php",
),
 "feInterface" => Array (
 "fe_admin_fieldList" => "hidden, starttime, front_page",
)
);

In the file "tca.php" in the extension you will find this PHP code which completes the $TCA
entry for the table:

<?php
if (!defined ("TYPO3_MODE")) die ("Access denied.");
$TCA["tx_mininews_news"] = Array (
 "ctrl" => $TCA["tx_mininews_news"]["ctrl"],
 "interface" => Array (
 "showRecordFieldList" => "hidden,starttime,front_page"
),
 "feInterface" => $TCA["tx_mininews_news"]["feInterface"],
 "columns" => Array (
 "hidden" => Array (
 "exclude" => 1,
 "label" => $LANG_GENERAL_LABELS["hidden"],
 "config" => Array (
 "type" => "check",
 "default" => "0"
)
),

... etc

API

EXT
[extension_key]

array User defined content for extensions. You can use this as you like.
Lets say you have an extension with the key "myext", then you have the right to define
properties for:

...['ctrl']['EXT']['myext'] = ... (whatever you define)

Ext.

Examples
Here are a few examples of configurations of the control section.
 1: $TCA['pages'] = Array (
 2: 'ctrl' => Array (
 3: 'label' => 'title',
 4: 'tstamp' => 'tstamp',
 5: 'sortby' => 'sorting',
 6: 'title' => 'LLL:EXT:lang/locallang_tca.php:pages',
 7: 'type' => 'doktype',
 8: 'delete' => 'deleted',
 9: 'crdate' => 'crdate',
 10: 'hideAtCopy' => 1,
 11: 'prependAtCopy' => 'LLL:EXT:lang/locallang_general.php:LGL.prependAtCopy',
 12: 'cruser_id' => 'cruser_id',
 13: 'useColumnsForDefaultValues' => 'doktype'
 14:),

The pages table has the configuration you see above (found in t3lib/stddb/tables.php). Here are a few notes:

• Line 3: When pages are displayed in the backend you will see the content from the field named "title" shown as the title of

TYPO3 Core APIs - 79

the page record.

• Line 5: This configures the field "sorting" as the field which determines the order in which pages are displayed within each
branch of the page tree.

• Line 6: The title for the pages table as shown in the backend (eg. "Pages" in english, "Sider" in danish etc...) is defined
here to come from a "locallang" file.

• Line 7: Defines which field will be the "type" field. This determines the set of fields shown in the edit forms in the backend.

• Line 10: Defines that pages should be hidden when copied.

The tt_content table (Content Elements) looks like this in the "ctrl" section (sysext/cms/ext_tables.php):
 1: // **
 2: // This is the standard TypoScript content table, tt_content
 3: // **
 4: $TCA['tt_content'] = Array (
 5: 'ctrl' => Array (
 6: 'label' => 'header',
 7: 'label_alt' => 'subheader,bodytext',
 8: 'sortby' => 'sorting',
 9: 'tstamp' => 'tstamp',
 10: 'title' => 'LLL:EXT:cms/locallang_tca.php:tt_content',
 11: 'delete' => 'deleted',
 12: 'type' => 'CType',
 13: 'prependAtCopy' => 'LLL:EXT:lang/locallang_general.php:LGL.prependAtCopy',
 14: 'copyAfterDuplFields' => 'colPos,sys_language_uid',
 15: 'useColumnsForDefaultValues' => 'colPos,sys_language_uid',
 16: 'enablecolumns' => Array (
 17: 'disabled' => 'hidden',
 18: 'starttime' => 'starttime',
 19: 'endtime' => 'endtime',
 20: 'fe_group' => 'fe_group',
 21:),
 22: 'typeicon_column' => 'CType',
 23: 'typeicons' => Array (
 24: 'header' => 'tt_content_header.gif',
 25: 'textpic' => 'tt_content_textpic.gif',
 26: 'image' => 'tt_content_image.gif',
 27: 'bullets' => 'tt_content_bullets.gif',
 28: 'table' => 'tt_content_table.gif',
 29: 'splash' => 'tt_content_news.gif',
 30: 'uploads' => 'tt_content_uploads.gif',
 31: 'multimedia' => 'tt_content_mm.gif',
 32: 'menu' => 'tt_content_menu.gif',
 33: 'list' => 'tt_content_list.gif',
 34: 'mailform' => 'tt_content_form.gif',
 35: 'search' => 'tt_content_search.gif',
 36: 'login' => 'tt_content_login.gif',
 37: 'shortcut' => 'tt_content_shortcut.gif',
 38: 'script' => 'tt_content_script.gif',
 39: 'div' => 'tt_content_div.gif',
 40: 'html' => 'tt_content_html.gif'
 41:),
 42: 'mainpalette' => '1',
 43: 'thumbnail' => 'image',
 44: 'dynamicConfigFile' => t3lib_extMgm::extPath($_EXTKEY).'tbl_tt_content.php'
 45:)
 46:);

• Line 7: Here additional fields are defined to be used if no content is found in the "header" field (defined in line 6)

• Line 16-21: The "enablecolumns" section is extensive for this table since it is a front end related table. Typically they use
the "enablecolumns" a lot.

• Line 22-41: For each content element type a new icon is defined. This helps the users to easily recognize which type of
content element they are looking at when they see the element in a list of records.

• Line 43: The column "image" is used to fetch any thumbnails there are to show for the record.

['interface'] section
Contains configuration for display and listing in various parts of the core backend:

Key Datatype Description
showRecordFieldList string

(list of
fieldnames)

Defines which fields are shown in the show-item dialog. Eg. 'doktype,title,alias,hidden,....'

TYPO3 Core APIs - 80

Key Datatype Description
always_description boolean If set, the description/helpicons are always shown regardless of the configuration of the user.

Works only in TCEforms and for tables loaded via t3lib_BEfunc::loadSingleTableDescription()

maxDBListItems integer Max number of items shown in the List module

maxSingleDBListItems integer Max number of items shown in the List module, if this table is listed in Extended mode (listing only
a single table)

Example
This is how the "pages" table is configured for these settings (in t3lib/stddb/tables.php):
 'interface' => Array (
 'showRecordFieldList' => 'doktype,title',
 'maxDBListItems' => 30,
 'maxSingleDBListItems' => 50
),

['feInterface'] section
The "feInterface" section contains properties related to Front End Editing of the table, mostly related to the feAdmin_lib.

Is depricated in the sense that it will still exist, but will not be (and should not be) extended further.

Key Datatype Description
editableRecordFields string

(list of
fieldnames)

List of fields, example: '*name, *type, biography, filmography'. Used for front-end edit module
created by Rene Fritz <r.fritz@colorcube.de>

fe_admin_fieldList string
(list of
fieldnames)

List of fields allowed for editing/creation with the fe_adminLib module, see
media/scripts/fe_adminLib, example: 'pid,name,title,address'

['columns'][fieldname] section
The "columns" section contains configuration for each table field (also called "column") which can be edited by the backend.

The configuration includes both properties for the display in the backend as well as the processing of the submitted data.

Each field can be configured as a certain "type" (eg. checkbox, selector, iinput field, text area, file or db-relation field, user
defined etc.) and for each type a separate set of additional properties applies. These properties are clearly explained below
for each type.

This table showns the keys of the ['columns'][fieldname] array:

Key Datatype Description Scope
label string

(LS)
Required!
The name of the field as it is shown in the interface:

Display

exclude boolean If set, all backend users are prevented from editing the field unless they are members of a
backend usergroup with this field added as an "Allowed Excludfield" (or "admin" user).
See "Inside TYPO3" document about permissions.

Proc.

TYPO3 Core APIs - 81

Key Datatype Description Scope
l10n_mode string

(keyword)
Localization mode.
Only active if the ctrl-directive “languageField” is set.

Keywords are:
● exclude – Field will not be shown in TCEforms if this record is a localization of the

default language. (Works basically like a display condition.)
Excluded fields will not be copied when a language-copy is made.
May have frontend implications similar to “mergeIfNotBlank”.

● mergeIfNotBlank – Field will be editable but if the field value is blank the value from the
default translation is used (this can be very useful for images shared from the default
record). Requires frontend support.
In the backend the effect is that the field content is not copied when a new “localization
copy” is made.

● noCopy – Like mergeIfNotBlank but without the implications for the frontend; The field is
just not copied.

● prefixLangTitle – The field will get copied, but the content is prefixed with the title of the
language. Works only for field types like “text” and “input”

Display /
Proc.

config array Contains the actual configuration properties of the fields display and processing behaviour.
The possibilities for this array depend on the value of the array key "type" within the array.
Each valid value for "type" is shown below in a separate table.
Notice: For all configuration types, the "default" key in the array can be used to set the
default value of the field.

-

displayCond string Contains a condition rules for whether to display the field or not.

A rules is a string divided into several parts by ":" (colons).
The first part is the rule-type and the subsequent parts will depend on the rule type.
Currently these rule values can be used:
• FIELD : This evaluates based on another fields value in the record.

• Part 1 is the fieldname
• Part 2 is the evaluation type. These are the possible options:

• REQ : Requires the field to have a "true" value. False values are "" (blank string)
and 0 (zero) or if the field does not exist at all. All else is true.
For the REQ evaluation type Part3 of the rules string must be the string "true" or
"false". If "true" then the rules returns "true" if the evaluation is true. If "false" then
the rules returns "true" if the evaluation is false.

• > / < / >= / <= : Evaluates if the field value is greater than, less than the value in
"Part 3"

• = / != : Evaluates if the field value is equal to value in "Part 3" (or not, if the
negation flag, "!" is prefixed)

• IN / !IN : Evaluates if the field value is in the comma list equal to value in "Part 3"
(or not, if the negation flag, "!" is prefixed)

• - / !- : Evaluates if the field value is in the range specified by value in "Part 3"
([min] - [max]) (or not, if the negation flag, "!" is prefixed)

• EXT : This evaluates based on current status of extensions.
• Part 1 is the extension key
• Part 2 is the evaluation type:

• LOADED : Requires the extension to be loaded if Part3 is "true" and reversed if
Part3 is "false".

• REC : This evaluates based on the current record
• Part 1 is the type.

• NEW : Requires the record to be new if Part2 is "true" and reversed if Part2 is
"false".

Example:
This example will require the field named "tx_templavoila_ds" to be true, otherwise the field
for which this rule is set will not be displayed:

'displayCond' => 'FIELD:tx_templavoila_ds:REQ:true',

This example requires the extension "static_info_tables" to be loaded, otherwise
the field is not displayed. (This is useful if the field makes a look-up on a table
coming from another extension!)

'displayCond' => 'EXT:static_info_tables:LOADED:true',

Display

TYPO3 Core APIs - 82

Key Datatype Description Scope
defaultExtras string In the “types” configuration of a field you can specify on position 4 a string of "extra

configuration". This string will be the default string of extra options for a field regardless of
types configuration. For instance this can be used to create an RTE field without having to
worry about special configuration in “types” config.
This is also the way by which you can enable the RTE for FlexForm fields.

Example value:

richtext[cut|copy|paste|formatblock|textcolor|bold|italic|underline|left|center|right|orderedlist|
unorderedlist|outdent|indent|link|table|image|line|chMode]:rte_transform[mode=ts_css|
imgpath=uploads/tx_mininews/rte/]

['columns'][fieldname]['config'] / TYPE: "input"
The type "input" generates an <input> field, possibly with additional features applied.

Key Datatype Description Scope
type string [Must be set to "input"] Display

/ Proc.

size integer Abstract value for the width of the <input> field. To set the input field to the full width of the
form area, use the value 48. Default is 30.

Display

max integer Value for the "maxlength" attribute of the <input> field.
If the form element edits a varchar(40) field in the database you should also set this value to
40.

Display

default string Default value Display
/ Proc.

TYPO3 Core APIs - 83

Key Datatype Description Scope
eval list of

keywords
Configuration of field evaluation.
Some of these evaluation keywords will trigger a JavaScript pre-evaluation in the form. Other
evaluations will be performed in the backend.
The eval-functions will be executed in the list-order.

Keywords:
• required : A non-empty value is required in the field (otherwise the form cannot be

saved).
• trim : The value in the field will have whitespace around it trimmed away.
• date : The field will evaluate the input as a date, automatically converting the input to a

UNIX-time in seconds. The display will be like "12-8-2003" while the database value
stored will be "1060639200".

• datetime : The field will evaluate the input as a date with time (detailed to hours and
minutes), automatically converting the input to a UNIX-time in seconds. The display will
be like "16:32 12-8-2003" while the database value will be "1060698720".

• time : The field will evaluate the input as a timestamp in seconds for the current day (with
a precision of minutes). The display will be like "23:45" while the database will be "85500".

• timesec : The field will evaluate the input as a timestamp in seconds for the current day
(with a precision of seconds). The display will be like "23:45:13" while the database will be
"85513".

• year : Evaluates the input to a year between 1970 and 2038. If you need any year, then
use "int" evaluation instead.

• int : Evaluates the input to an integer.
• upper : Converts to uppercase (only A-Z plus a selected set of Western European special

chars).
• lower : Converts the string to lowercase (only A-Z plus a selected set of Western

European special chars).
• alpha : Allows only a-zA-Z characters.
• num : Allows only 0-9 characters in the field.
• alphanum : Same as "alpha" but allows also "0-9"
• alphanum_x : Same as "alphanum" but allows also "_" and "-" chars.
• nospace : Removes all occurencies of space characters (chr(32))
• md5 : Will convert the inputted value to the md5-hash of it (The JavaScript MD5() function

is found in typo3/md5.js)
• is_in : Will filter out any character in the input string which is not found in the string

entered in the key "is_in" (see below).
• password : Will show "*******" in the field after entering the value and moving to another

field. Thus passwords can be protected from display in the field. Notice that the value
during entering it is visible!

• double2 : Converts the input to a floating point with 2 decimal positions, using the "."
(period) as the decimal delimited (accepts also "," for the same).

• unique : Requires the field to be unique for the whole table. (Evaluated on the server
only). NOTICE: When selecting on unique-fields, make sure to select using “AND pid>=0”
since the field CAN contain duplicate values in other versions of records (always having
PID = -1). This also means that if you are using versioning on a table where the unique-
feature is used you cannot set the field to be truely unique in the database either!

• uniqueInPid : Requires the field to be unique for the current PID (among other records on
the same page). (Evaluated on the server only)

All the above evaluations (unless noted) are done by JavaScript with the functions found in
the script t3lib/jsfunc.evalfield.js
"(TCE)" means the evaluation is done in the TCE on the server. The class used for this is
t3lib_TCEmain.

Example:
Setting the field to evaluate the input to a date returned to the database in UNIX-time
(seconds)

'eval' => 'date',

Trimming the value for white space before storing in the database (important for
varchar fields!)
'eval' => 'trim',

By this configuration the field will be stripped for any space characters, converted to
lowercase, only accepted if filled in and on the server the value is required to be
unique for all records from this table:
'eval' => 'nospace,lower,unique,required'

Display
/ Proc.

is_in string If the evaluation type "is_in" (see above, under key "eval") is used for evaluation, then the
characters in the input string should be found in this string as well.

Display
/ Proc.

TYPO3 Core APIs - 84

Key Datatype Description Scope
checkbox string If defined (even empty), a checkbox is placed before the input field.

If a value other than the value of 'checkbox' (this value) appears in the input-field the
checkbox is checked.
Example:
'checkbox' => '123',

If you set this value then entering "12345" in the field will render this:

But if you either uncheck the checkbox or just enter the value "123" you will an empty input
field and no checkbox set - however the value of the field will be "123":

This feature is useful for date-fields for instance. In such cases the checkbox will allow people
to quickly remove the date setting (equal to setting the date to zero which actually means 1-1
1970 or something like that).

Example listing:
 'config' => Array (
 'type' => 'input',
 'size' => '8',
 'max' => '20',
 'eval' => 'date',
 'checkbox' => '0',
 'default' => '0'
)

Will create a field like this below. Checking the checkbox will insert the date of the
current day. Unchecking the checkbox will just remove the value and silently sent a
zero to the server (since the value of the key "checkbox" is set to "0").

Display
/ Proc.

range array An array which defines an integer range within which the value must be.

Keys:
"lower": Defines the lower integer value.
"upper": Defines the upper integer value.

You can specify both or only one of them.

Notice: This feature is evaluated on the server only so any regulation of the value will have
happend after saving the form.

Example:
Limits an integer to be within the range 10 to 1000:

 'eval' => 'int',
 'range' => array('lower' => 10,'upper' => 1000),

In this example the upper limit is set to the last day in year 2020 while the lowest
possible value is set to the date of yesterday.
 'range' => Array (
 'upper' => mktime(0,0,0,12,31,2020),
 'lower' => mktime(0,0,0,date('m')-1,date('d'),
date('Y'))
)

Proc.

wizards array [See section later for options] Display

Now follows some codelistings as examples:

Example: A "date" field
This is the typical configuration for a date field, like "starttime":

 'starttime' => Array (

TYPO3 Core APIs - 85

 'exclude' => 1,
 'label' => 'LLL:EXT:lang/locallang_general.php:LGL.starttime',
 'config' => Array (
 'type' => 'input',
 'size' => '8',
 'max' => '20',
 'eval' => 'date',
 'checkbox' => '0',
 'default' => '0'
)
),

Example: A "username" field
In this example the field is for entering a username (from "fe_users"). A number of requirements are imposed onto the field,
namely that it must be unique within the page where the record is stored, must be in lowercase and without spaces in it:
 'username' => Array (
 'label' => 'LLL:EXT:cms/locallang_tca.php:fe_users.username',
 'config' => Array (
 'type' => 'input',
 'size' => '20',
 'max' => '50',
 'eval' => 'nospace,lower,uniqueInPid,required'
)
),

Example: A typical input field
This is just a very typical configuration which sets the size and a character limit to the field. In addition the input value is
trimmed for surrounding whitespace which is a very good idea when you enter values into varchar fields.
 'name' => Array (
 'exclude' => 1,
 'label' => 'LLL:EXT:lang/locallang_general.php:LGL.name',
 'config' => Array (
 'type' => 'input',
 'size' => '40',
 'eval' => 'trim',
 'max' => '80'
)
),

Example: Required values
Here the field is required to be filled in:
 'title' => Array (
 'label' => 'LLL:EXT:cms/locallang_tca.php:fe_groups.title',
 'config' => Array (
 'type' => 'input',
 'size' => '20',
 'max' => '20',
 'eval' => 'trim,required'
)
),

['columns'][fieldname]['config'] / TYPE: "text"
This field type generates a <textarea> field or inserts a RTE (Rich Text Editor).

Such a field looks like this:

TYPO3 Core APIs - 86

Key Datatype Description Scope
type string [Must be set to "text"] Display

/ Proc.

cols integer Abstract value for the width of the <textarea> field. To set the textarea to the full width of the
form area, use the value 48. Default is 30.

Display

rows integer The number of rows in the textarea. May be corrected for harmonisation between browsers.
Will also automatically be increased if the content in the field is found to be of a certain
length, thus the field will automatically fit the content.

Default is 5. Max value is 20.

Display

wrap ["off",
"virtual"]

Determines the wrapping of the textarea field. There are two options:

"virtual": (Default) The textarea will automatically wrap the lines like it would be expected for
editing a text.
"off": The textarea will not wrap the lines as you would expect when editing some kind of
code.

Notice: If the string "nowrap" is found among options in the fields extra configuration from the
"types" listing this will override the setting here to "off".

Example:
This configuration will create a textarea useful for entry of code lines since it will not wrap the
lines:

 "config" => Array (
 "type" => "text",
 "cols" => "40",
 "rows" => "15",
 'wrap' => 'off',
)

Display

default string Default value Display
/ Proc.

wizards array [See section later for options] Display

Now follows some codelistings as examples:

Example: A quite normal field
This is the typical configuration for a textare field:
 'message' => Array (
 'label' => 'LLL:EXT:sys_note/locallang_tca.php:sys_note.message',
 'config' => Array (
 'type' => 'text',
 'cols' => '40',
 'rows' => '15'
)
),

['columns'][fieldname]['config'] / TYPE: "check"
This type creates checkbox(es). Such elements might look like this:

You can also configure checkboxes to appear in an array:

TYPO3 Core APIs - 87

You can have between 1 and 10 checkboxes and the field type in the database must be an integer. No matter how many
checkboxes you have each check box will correspond to a single bit in the integer value. Even if there is only one checkbox
(which in turn means that you should theoretically check the bit-0 of values from single-checkbox fields and not just whether it
is true or false!).

Key Datatype Description Scope
type string [Must be set to "check"] Display /

Proc.

items array If set, this array will create an array of checkboxes instead of just a single "on/off" checkbox.

Notice: You can have a maximum of 10 checkboxes in such an array and each element is
represented by a single bit in the integer value which ultimately goes into the database.

In this array each entry is itself an array where the first entry is the label (LS) and the second
entry is a blank value. The value sent to the database will be an integer where each bit
represents the state of a checkbox in this array.

Example:

'items' => Array (
 Array('Green tomatoes', ''),
 Array('Red peppers', '')
),

Display

cols integer How many columns the checkbox array are shown in.
Range is 1-10, 1 being default.

(Makes sense only if the 'array' key is defining a checkbox array)

Display

showIfRTE boolean If set, this field will show only if the RTE editor is enabled (which includes correct
browserversion and user-rights altogether.)

Display

default integer Setting the default value of the checkbox(es).

Notice: Each bit corresponds to a check box (even if only one checkbox which maps to bit-
0).

Display /
Proc.

itemsProcFunc string
(function
reference)

PHP function which is called to fill / manipulate the array with elements.

The function/method will have an array of parameters passed to it (where the item-array is
passed by reference in the key 'items'). By modifying the array of items, you alter the list of
items.
For more information, see how user-functions are specified in the section about 'wizards'
some pages below here.

Display

Now follows some codelistings as examples:

Example: A single checkbox
A totally unfancy checkbox:
 'personal' => Array (
 'label' => 'LLL:EXT:sys_note/locallang_tca.php:sys_note.personal',
 'config' => Array (
 'type' => 'check'
)
)

Example: A checkbox array
This is an example of a checkbox array with two checkboxes in it. The first checkbox will have bit-0 and the second bit-1. The
default value is set to '3' which means that each checkbox will be enabled by default (since the value three contains both bit-0
and bit-1):
 'sendOptions' => Array (
 'label' => 'LLL:EXT:direct_mail/locallang_tca.php:sys_dmail.sendOptions',
 'config' => Array (
 'type' => 'check',
 'items' => Array (
 Array('LLL:EXT:direct_mail/locallang_tca.php:sys_dmail.sendOptions.I.0', ''),
 Array('LLL:EXT:direct_mail/locallang_tca.php:sys_dmail.sendOptions.I.1', '')
),
 'default' => '3'
)
),

TYPO3 Core APIs - 88

['columns'][fieldname]['config'] / TYPE: "radio"
Radio buttons are seldom used, but sometimes they can be more attractive than their more popular sisters (selector boxes).

Here you see radio buttons in action for the "Filemounts" records:

Key Datatype Description Scope
type string [Must be set to "radio"] Display

/ Proc.

items array Required.

An array of the values which can be selected.
Each entry is in itself an array where the first entry is the title (LS) and the second entry is the
value of the radiobutton.

See example below.

Display

default mixed Default value. Display
/ Proc.

itemsProcFunc string
(function
reference)

PHP function which is called to fill / manipulate the array with elements.

The function/method will have an array of parameters passed to it (where the item-array is
passed by reference in the key 'items'). By modifying the array of items, you alter the list of
items.
For more information, see how user-functions are specified in the section about 'wizards'
some pages below here.

Display

Now follows a code listing as example:

Example:
An example of radio buttons configuration from "sys_filemounts" (see above):
 'base' => Array (
 'label' => 'BASE',
 'config' => Array (
 'type' => 'radio',
 'items' => Array (
 Array('absolute (root) / ', 0),
 Array('relative ../fileadmin/', 1)
),
 'default' => 0
)
)

['columns'][fieldname]['config'] / TYPE: "select"
Selectors boxes are very common elements in forms. By the "select" type you can create selector boxes. In the most simple
form this is a list of values amoung which you can chose only one. In that way it is similar to the "radio" type above.

It is also possible to configure more complex types where the values from from a look up in another database table and you
can even have a type where more than one value can be selected in any given order you like.

TYPO3 Core APIs - 89

Key Datatype Description Scope
type string [Must be set to "select"] Display /

Proc.

items array Contains the elements for the selector box unless the property "foreign_table" or
"special" has been set in which case automated values are set in addition to any
values listed in this array.

Each element in this array is in itself an array where:
• First value is the item label (LS)
• Second value is the value of the item.

The special value "--div--" is used to insert a non-selectable value that
appears as a divider label in the selector box (only for maxitems <=1)
Values must not contain "," (comma) and "|" (vertical bar). If you want to use
“authMode” you should also refrain from using “:” (colon).

• Third value is an optional icon.
Default from "t3lib/gfx/" but if prepended with "../" it will be taken from any
PATH_site directory. You can also prepend the files "ext/" and "sysext/" if they
are in global extension directories. And finally - taking precedence over any
other value - files prepended with "EXT:" will be found in the respective
extension.

• Forth value is an optional description text. This is only shown when the list is
shown by renderMode "checkbox".

• Fifth value is reserved as keyword “EXPL_ALLOW” or “EXPL_DENY”. See
option “authMode” / “individual” for more details.

Example:
A configuration could look like this:

 'type' => 'select',
 'items' => Array (
 Array('English', ''),
 Array('Danish', 'dk'),
 Array('German', 'de'),
)

A more complex example could be this (includes icons):

'type' => 'select',
'items' => Array (
 Array('LLL:EXT:cms/locallang_ttc.php:k1', 0, 'selicons/k1
.gif'),
 Array('LLL:EXT:cms/locallang_ttc.php:k2', 1, 'selicons/k2
.gif'),
 Array('LLL:EXT:cms/locallang_ttc.php:k3', 2, 'selicons/k3
.gif'),
)

Display

itemsProcFunc string
(function
reference)

PHP function which is called to fill / manipulate the array with elements.

The function/method will have an array of parameters passed to it (where the item-
array is passed by reference in the key 'items'). By modifying the array of items,
you alter the list of items.
For more information, see how user-functions are specified in the section about
'wizards' some pages below here.

Display

selicon_cols integer (>0) The number of rows in which to position the iconimages for the selectorbox.
Default is to render as many columns as iconimages.

Display

suppress_icons string Lets you disable display of icons. Can be nice to do if icons are coming from
foreign database records and you don't want them.
Set it to "IF_VALUE_FALSE" if you only want to see icons when a value (non-
blank, non-zero) is selected. Otherwise no icons are shown.
Set it to "ONLY_SELECTED" if you only want to see an icon for the selected item.
Set to "1" (true) if you never want any icons.

Display

TYPO3 Core APIs - 90

Key Datatype Description Scope
iconsInOptionTags boolean If set, icons will appear in the <option> tags of the selector box. This feature

seems only to work in Mozilla.

foreign_table string
(tablename)

The item-array will be filled with records from the table defined here. The table
must be configured in $TCA.
See the other related options below.

Proc. /
Display

foreign_table_where string
(SQL
WHERE
clause)

The items from "foreign_table" are selected with this WHERE-clause.
The table is joined with the "pages"-table and items are selected only from pages
where the user has read access! (Not checking DB mount limitations!)

Example:

AND [foreign_table].pid=0 ORDER BY [foreign_table].sorting

Markers:
You can use markers in the WHERE clause:
• ###REC_FIELD_[fieldname]###
• ###THIS_UID### - is current element uid (zero if new).
• ###CURRENT_PID### - is the current page id (pid of the record).
• ###STORAGE_PID###
• ###SITEROOT###
• ###PAGE_TSCONFIG_ID### - a value you can set from Page TSconfig

dynamically.
• ###PAGE_TSCONFIG_IDLIST### - a value you can set from Page TSconfig

dynamically.
• ###PAGE_TSCONFIG_STR### - a value you can set from Page TSconfig

dynamically.

The markers are preprocessed so that the value of CURRENT_PID and
PAGE_TSCONFIG_ID are always integers (default is zero),
PAGE_TSCONFIG_IDLIST will always be a commalist of integers (default is zero)
and PAGE_TSCONFIG_STR will be addslashes'ed before substitution (default is
blank string).

Proc. /
Display

foreign_table_prefix string
(LS)

Label prefix to the title of the records from the foreign-table (LS). Display

foreign_table_loadIcons boolean If set, then the icons for the records of the foreign table are loaded and presented
in the form.
This depends on the 'selicon_field' of the foreign tables [ctrl] section being
configured.

Display

neg_foreign_table
neg_foreign_table_where
neg_foreign_table_prefix
neg_foreign_table_loadIcons
neg_foreign_table_imposeV
alueField

[mixed] Four options corresponding to the 'foreign_table'-keys but records from this table
will be referenced by negative uid-numbers (unless if MM is configured in which
case it works like the group-type).

'neg_foreign_table' is active only if 'foreign_table' is defined also.

Display /
Proc.

fileFolder string Specifying a folder from where files are added to the item array.
Specify the folder relative to the PATH_site, possibly using the prefix "EXT:" to
point to an extension folder.
Files from the folder is selected recursively to the level specified by
"fileFolder_recursions" (see below) and only files of the extension defined by
"fileFolder_extList" is selected (see below).
Only the file reference relative to the "fileFolder" is stored.
If the files are images (gif,png,jpg) they will be configured as icons (third
parameter in items array).

Example:
'config' => Array (
 'type' => 'select',
 'items' => Array (
 Array('',0),
),
 'fileFolder' => 'EXT:cms/tslib/media/flags/',
 'fileFolder_extList' => 'png,jpg,jpeg,gif',
 'fileFolder_recursions' => 0,
 'selicon_cols' => 8,
 'size' => 1,
 'minitems' => 0,
 'maxitems' => 1,
)

Display /
Proc

fileFolder_extList string List of extensions to select. If blank, all files are selected. Specify list in lowercase.
See "t3lib_div::getAllFilesAndFoldersInPath()"

Display /
Proc

fileFolder_recursions integer Depth of directory recursions. Default is 99. Specify in range from 0-99.
0 (zero) means no recursion into subdirectories.
See "t3lib_div::getAllFilesAndFoldersInPath()"

Display /
Proc

TYPO3 Core APIs - 91

Key Datatype Description Scope
allowNonIdValues boolean If "foreign_table" is enabled:

If set, then values which are not integer ids will be allowed. May be needed if you
use itemsProcFunc or just enter additional items in the items array to produce
some string-value elements for the list.
Notice: If you mix non-database relations with database relations like this, DO
NOT use integers for values and DO NOT use "_" (underscore) in values either!
Notice: Will not work if you also use "MM" relations!

Proc.

default string Default value.
If empty, the first element in the items array is selected.

Display /
Proc.

dontRemapTablesOnCopy (See same feature for type="group", internal_type="db")
Set it to the exact same value as "foreign_table" if you don't want values to be
remapped on copy.

Proc.

rootLevel boolean If set, the "foreign_table_where" will be ignored and a "pid=0" will be added to the
query to select only records from root level of the page tree.

Display

MM string
(table name)

Means that the relation to the records of "foreign_table" / "new_foreign_table" is
done with a M-M relation with a third "join" table.
That table typically has three columns:
• uid_local, uid_foreign for uids respectively.
• sorting is a required field used for ordering the items.

The fieldname of the config is not used for data-storage anymore but rather it's set
to the number of records in the relation on each update, so the field should be an
integer.
Notice: Using MM relations you can ONLY store real relations for foreign tables in
the list - no additional string values or non-record values.

Proc.

special string
(any of
keywords)

This configures the selector box to fetch content from some predefined internal
source. These are the possibilities:
• tables - the list of TCA tables is added to the selector (excluding "adminOnly"

tables).
• pagetypes - all "doktype"-values for the "pages" table are added.
• exclude - the list of "excludeFields" as found in $TCA is added.
• modListGroup - module-lists added for groups.
• modListUser - module-lists added for users.
• explicitValues – List values that require explicit permissions to be allowed or

denied. (See “authMode” directive for the “select” type).
• languages – List system languages (sys_language records from page tree

root + Default language)
• custom – Custom values set by backend modules (see

TYPO3_CONF_VARS[BE][customPermOptions])

As you might have guessed these options are used for backend user
management and pretty worthless for most other purposes.

Display /
Proc.

size integer Height of the selectorbox in TCEforms. Display

autoSizeMax integer If set, then the height of multiple-item selector boxes (maxitem > 1) will
automatically be adjusted to the number of selected elements, however never less
than "size" and never larger than the integer value of "autoSizeMax" itself (takes
precedence over "size"). So "autoSizeMax" is the maximum height the selector
can ever reach.

Display

selectedListStyle string If set, this will override the default style of the selector box with selected items
(which is “width:200px”).
Applies for when maxitems is > 1

Display

itemListStyle string If set, this will override the default style of the selector box with available items to
select (which is “width:200px”).
Applies for when maxitems is > 1

Display

TYPO3 Core APIs - 92

Key Datatype Description Scope
renderMode string (any of

keywords)
(Only for maxitems > 1)

Renders the list of multiple options as either a list of checkboxes or as a selector
box with multiple choices.
The data type is fully compatible with an ordinary multiple element list except that
duplicate values cannot be represented for obvious reasons (option "multiple"
does not work) and the order of values is fixed.

Keywords are:
● checkbox - Renders a list of checkboxes
● singlebox - Renders a single multiple selector box

When renderMode is “checkbox” or “singlebox” all values selected by
“foreign_table” settings will automatically have their icon part in the items array set
to the record icon (unless overruled by “selicon_field” of that table).

Notice: “maxitems” and “minitems” are not enforced in the browser for any of the
render modes here! However they will be on the server. It is recommended to set
“minitems” to zero and “maxitems” to a very large number exceeding the possible
number of values you can select (for instance set it to 1000 or so).

multiple boolean Allows the same item more than once in a list. Display /
Proc.

maxitems integer > 0 Maximum number of items in the selector box. (Default = 1) Display /
Proc

minitems integer > 0 Minimum number of items in the selector box. (Default = 0) Display

wizards array [See section later for options] Display

disableNoMatchingValueEle
ment

boolean If set, then no element is inserted if the current value does not match any of the
existing elements. A corresponding options is also found in Page TSconfig.

Display

authMode string
keyword

Authorization mode for the selector box. Keywords are:

● explicitAllow – All static values from the “items” array of the selector box will
be added to a matrix in the backend user configuration where a value must be
explicitly selected if a user (other than admin) is allowed to use it!)

● explicitDeny – All static values from the “items” array of the selector box will
be added to a matrix in the backend user configuration where a value must be
explicitly selected if a user should be denied access.

● individual – State is individually set for each item in the selector box. This is
done by the keywords “EXPL_ALLOW” and “EXPL_DENY” entered at the 5.
position in the item array (see “items” configuration above). Items without any
of these keywords kan be selected as usual without any access restrictions
applied.

Notice: The authentication modes will work only with values that are statically
present in the “items” configuration. Any values added from foreign tables, file
folder or by user processing will not be configurable and the evaluation of such
values is not guaranteed for!

maxitems > 1
“authMode” works also for selector boxes with maxitems > 1. In this case the list
of values is traversed and each value is evaluated. Any disallowed values will be
removed.
If all submitted values turns out to be removed the result will be that the field is not
written – basically leaving the old value. For maxitems <=1 (single value) this
means that a non-allowed value is just not written. For multiple values (maxitems
>1) it depends on whether any elements are left in the list after evaluation of each
value.

Display /
Proc

authMode_enforce string
keyword

Various additional enforcing options for authMode.

Keywords are:
● strict - If set, then permission to edit the record will be granted only if the

“authMode” evaluates OK. The default is that a record having an authMode
configured field with a “non-allowed” value can be edited – just the value of the
authMode field cannot be set to an unallowed value.
Notice: This works only when maxitems <=1 (and no MM relations) since the
“raw” value in the record is all that is evaluated!

Display /
Proc

Here follow some code listings as examples:

Example - A simple selector box:
This is the most simple selector box you can get. It contains a static set of options you can select from:

TYPO3 Core APIs - 93

 1: 'type' => Array (
 2: 'label' => 'Test',
 3: 'config' => Array (
 4: 'type' => 'select',
 5: 'items' => Array (
 6: Array('', '0'),
 7: Array('Option 1', '1'),
 8: Array('Option 2', '2'),
 9: Array('__Final option:__', '--div--'),
 10: Array('Option 3', '3'),
 11:),
 12:)
 13:),

In the configuration the elements are configured by the "items" array. Each entry in the array contains pairs of label/value.
Notice line 9; this entry is a divider. This value is not possible to select - it only helps to divide the list of options with a label
indicating a new section.

Example - A multiple value selector with contents from a database table

 1: 'include_static' => Array (
 2: 'label' => 'Include static:',
 3: 'config' => Array (
 4: 'type' => 'select',
 5: 'foreign_table' => 'static_template',
 6: 'foreign_table_where' => 'ORDER BY static_template.title DESC',
 7: 'size' => 10,
 8: 'maxitems' => 20,
 9: 'default' => ''
 10:)
 11:),

This shows a simple configuration where the values are fetched from a foreign database table ordered by the title (line 5-6).
Notice line 7 setting the size to 10 (the height of the selector boxes) and line 8 setting the maximum number of values you
can select to 20.

The value stored in the database will be a comma list of uid numbers of the records selected.

Example - Using a look up table for single value
In this case the selector box looks up languages in a static table from an extension "static_info_tables":

TYPO3 Core APIs - 94

The configuration looks like this:
 1: 'static_lang_isocode' => Array (
 2: 'exclude' => 1,
 3: 'label' => 'LLL:EXT:cms/locallang_tca.php:sys_language.isocode',
 4: 'displayCond' => 'EXT:static_info_tables:LOADED:true',
 5: 'config' => Array (
 6: 'type' => 'select',
 7: 'items' => Array (
 8: Array('',0),
 9:),
 10: 'foreign_table' => 'static_languages',
 11: 'foreign_table_where' => 'AND static_languages.pid=0 ORDER BY
static_languages.lg_name_en',
 12: 'size' => 1,
 13: 'minitems' => 0,
 14: 'maxitems' => 1,
 15:)
 16:),

Notice how line 4 will set a condition that this box should only be displayed if the extension it belongs to exists! That is very
important since otherwise the table will not be in the database and we will get SQL errors.

In line 11 we see how a condition to the look up apply. Finally in line 12 and 14 it is explicitly configured that the selector box
can contain only one value (line 14) and therefore should be only one row high (line 12)

Example - Mixing lookup values with static values
This is the well known selector for frontend user group access restriction. It contains all user groups the backend user can
access (here: "group") plus additional static values ("Hide at login", "Show at any login") and a divider ("__Usergroups:__")

The configuration looks like this:
 1: 'fe_group' => Array (
 2: 'exclude' => 1,
 3: 'label' => 'LLL:EXT:lang/locallang_general.php:LGL.fe_group',
 4: 'config' => Array (
 5: 'type' => 'select',
 6: 'items' => Array (
 7: Array('', 0),
 8: Array('LLL:EXT:lang/locallang_general.php:LGL.hide_at_login', -1),
 9: Array('LLL:EXT:lang/locallang_general.php:LGL.any_login', -2),
 10: Array('LLL:EXT:lang/locallang_general.php:LGL.usergroups', '--div--')
 11:),
 12: 'foreign_table' => 'fe_groups'
 13:)
 14:),

TYPO3 Core APIs - 95

Example - Adding icons for selection
This example shows how you can add icons to the selection choice very easily. Each icon is associated with an option in the
selector box and clicking the icon will automatically select the option in the selector box and more the black arrow:

The configuration looks like this.
 1: 'imageorient' => Array (
 2: 'label' => 'LLL:EXT:cms/locallang_ttc.php:imageorient',
 3: 'config' => Array (
 4: 'type' => 'select',
 5: 'items' => Array (
 6: Array('LLL:EXT:cms/locallang_ttc.php:imageorient.I.0', 0,
'selicons/above_center.gif'),
 7: Array('LLL:EXT:cms/locallang_ttc.php:imageorient.I.1', 1, 'selicons/above_right.gif'),
 8: Array('LLL:EXT:cms/locallang_ttc.php:imageorient.I.2', 2, 'selicons/above_left.gif'),
 9: Array('LLL:EXT:cms/locallang_ttc.php:imageorient.I.3', 8,
'selicons/below_center.gif'),
 10: Array('LLL:EXT:cms/locallang_ttc.php:imageorient.I.4', 9, 'selicons/below_right.gif'),
 11: Array('LLL:EXT:cms/locallang_ttc.php:imageorient.I.5', 10, 'selicons/below_left.gif'),
 12: Array('LLL:EXT:cms/locallang_ttc.php:imageorient.I.6', 17,
'selicons/intext_right.gif'),
 13: Array('LLL:EXT:cms/locallang_ttc.php:imageorient.I.7', 18,
'selicons/intext_left.gif'),
 14: Array('LLL:EXT:cms/locallang_ttc.php:imageorient.I.8', '--div--'),
 15: Array('LLL:EXT:cms/locallang_ttc.php:imageorient.I.9', 25,
'selicons/intext_right_nowrap.gif'),
 16: Array('LLL:EXT:cms/locallang_ttc.php:imageorient.I.10', 26,
'selicons/intext_left_nowrap.gif')
 17:),
 18: 'selicon_cols' => 6,
 19: 'default' => '8'
 20:)
 21:),

Notice how each label/value pair contains an icon reference on the third position and how line 18 configures that the icons
should be arranged in 6 columns.

Also, notice the default value (line 19) set to 8 meaning that the option with value "8" (line 9) will be selected by default.

Example - Adding wizards
This example shows how wizards can be added to a selector box. The three typical wizards for a selector box is edit, add and
list items. This enables the user to create new items in the look up table while being right at the selector box where he want to
select them:

The configuration is rather long and looks like this (notice, that wizards are not exclusively available for selector boxes!)
 1: 'file_mountpoints' => Array (
 2: 'label' => 'File Mounts:',
 3: 'config' => Array (
 4: 'type' => 'select',
 5: 'foreign_table' => 'sys_filemounts',
 6: 'foreign_table_where' => ' AND sys_filemounts.pid=0 ORDER BY sys_filemounts.title',
 7: 'size' => '3',
 8: 'maxitems' => '10',
 9: 'autoSizeMax' => 10,
 10: 'show_thumbs' => '1',
 11: 'wizards' => Array(
 12: '_PADDING' => 1,
 13: '_VERTICAL' => 1,
 14: 'edit' => Array(
 15: 'type' => 'popup',
 16: 'title' => 'Edit filemount',

TYPO3 Core APIs - 96

 17: 'script' => 'wizard_edit.php',
 18: 'icon' => 'edit2.gif',
 19: 'popup_onlyOpenIfSelected' => 1,
 20: 'JSopenParams' => 'height=350,width=580,status=0,menubar=0,scrollbars=1',
 21:),
 22: 'add' => Array(
 23: 'type' => 'script',
 24: 'title' => 'Create new filemount',
 25: 'icon' => 'add.gif',
 26: 'params' => Array(
 27: 'table'=>'sys_filemounts',
 28: 'pid' => '0',
 29: 'setValue' => 'prepend'
 30:),
 31: 'script' => 'wizard_add.php',
 32:),
 33: 'list' => Array(
 34: 'type' => 'script',
 35: 'title' => 'List filemounts',
 36: 'icon' => 'list.gif',
 37: 'params' => Array(
 38: 'table'=>'sys_filemounts',
 39: 'pid' => '0',
 40:),
 41: 'script' => 'wizard_list.php',
 42:)
 43:)
 44:)
 45:),

From line 11 the configuration of the wizards takes place. See the wizard section in this document for more information.

Notice the configuration of "autoSizeMax" in line 9. This value will make the height of the selector boxes adjust themselves
automatically depending on the content in them.

Example - User processing and advanced look ups
In this example some more advanced features are used. On of them is that the look up for other database records is limited
to the PID of the host record. In other words, all entries are records located in the same page as the record we are editing
here:

Configuration looks like this:
 4: 'config' => Array (
 5: 'type' => 'select',
 6: 'items' => Array (
 7: Array('',0),
 8:),
 9: 'foreign_table' => 'tx_templavoila_datastructure',
 10: 'foreign_table_where' => 'AND tx_templavoila_datastructure.pid=###CURRENT_PID### ORDER BY
tx_templavoila_datastructure.uid',
 11: 'size' => 1,
 12: 'minitems' => 0,
 13: 'maxitems' => 1,
 14: 'itemsProcFunc' => 'tx_templavoila_handleStaticdatastructures->main',
 15: 'allowNonIdValues' => 1,
 16: 'suppress_icons' => 'ONLY_SELECTED',

In line 10 you see how the marker "###CURRENT_PID###" is used to limit the look up to the current page id.

TYPO3 Core APIs - 97

In line 14 it is also defined that the array of options should be processed by a user defined function, namely the method "main
()" in the class "tx_templavoila_handleStaticdatastructures". For this to work, the class must be included during configuration
(typically in ext_localconf.php files)

Line 15 configures that non-integer values are allowed. Normally values are restricted to integers if we are dealing with
database look ups.

Line 16 means that even if icons can be displayed for each of the records in the look up, an icon will be displayed only for the
selected record (if any).

Data format of "select" elements
Since the "select" element allows to store references to multiple elements we might want to look at how these references are
stored internally. The principle is the same as with the "group" type (see below).

['columns'][fieldname]['config'] / TYPE: "group"
The group element in TYPO3 makes it possible to create references to records from multiple tables in the system. This is
especially useful (compared to the "select" type) when records are scattered over the page tree and requires the Element
Browser to be selected. In this example, Content Element records are attached:

The "group" element It is also the element you can use to bind files to records in TYPO3. In this case image files:

One thing to notice about attaching files is that the files are actually moved into an internal file folder for TYPO3! It doesn't
merely create a reference to the files original position!

Key Datatype Description Scope
type string [Must be set to "group"] Display /

Proc.

internal_type string Required!
Configures the internal type of the "group" type of element.
There are two options for a value:
• "file" - this will create a field where files can be attached to the record
• "db" - this will create a field where database records can be attached as

references.

The default value is none of them - you must specify one of the values correctly!

Display /
Proc.

allowed string
(list of...)

For the "file" internal type (Optional):
A lowercase comma list of file extensions that are permitted. Eg. 'jpg,gif,txt'. Also
see 'disallowed'.

For the "db" internal type (Required!):
A comma list of tables from $TCA.
For example the value could be "pages,be_users".
Value from these tables are always the 'uid' field.
First table in list is understood as the default table, if a table-name is not
prepended to the value.
If the value is '*' then all tables are allowed (in this case you should set
"prepend_tname" so all tables are prepended with their table name for sure).

Proc. /
Display

TYPO3 Core APIs - 98

Key Datatype Description Scope
disallowed string

(list of)
[internal_type = file ONLY]

Default value is '*' which means that anything file-extension which is not allowed is
denied.

If you set this value (to for example "php,php3") AND the "allowed" key is an
empty string all extensions are permitted except ".php" and ".php3" files (works
like the [BE][fileExtensions] config option).
In other words:
• If you want to permit only certain file-extentions, use 'allowed' and not

disallowed.
• If you want to permit all file-extensions except a few, set 'allowed' to blank ("")

and enter the list of denied extensions in 'disallowed'.
• If you wish to allow all extensions with no exceptions, set 'allowed' to '*' and

disallowed to ''

Proc. /
Display

MM string
(tablename)

Defines MM relation table to use.

Means that the relation to the files/db is done with a M-M relation through a third
"join" table.

A MM-table must have these four columns:
• uid_local - for the local uid.
• uid_foreign - for the foreign uid.

If the "internal_type" is "file" then the "uid_foreign" should be a varchar or 60
or so (for the filename) instead of an unsigned integer as you would use for
the uid.

• tablenames - is required if you use multitable-relations and this field must be
a varchar of approx. 30
In case of files, the tablenames field is never used.

• sorting - is a required field used for ordering the items.

The fieldname of the config is not used for data-storage any more but rather it's
set to the number of records in the relation on each update, so the field should be
an integer.

Sample SQL table definitions for MM relations look like:

#
Example MM table for database relations
#
CREATE TABLE example_db_mm (
 uid_local int(11) DEFAULT '0' NOT NULL,
 uid_foreign int(11) DEFAULT '0' NOT NULL,
 tablenames varchar(30) DEFAULT '' NOT NULL,
 sorting int(11) DEFAULT '0' NOT NULL,
 KEY uid_local (uid_local),
 KEY uid_foreign (uid_foreign)
) TYPE=MyISAM;
#
Example MM table for file attachments
#
CREATE TABLE example_files_mm (
 uid_local int(11) DEFAULT '0' NOT NULL,
 uid_foreign varchar(60) DEFAULT '' NOT NULL,
 sorting int(11) DEFAULT '0' NOT NULL,
 KEY uid_local (uid_local),
 KEY uid_foreign (uid_foreign)
) TYPE=MyISAM;

Proc.

max_size integer [internal_type = file ONLY]

Files: Maximum filesize allowed in KB

Proc.

uploadfolder string [internal_type = file ONLY]

Filefolder under PATH_site in which the files are stored.
Example: 'uploads' or 'uploads/pictures'

Notice: TYPO3 does NOT create a reference to the file in its original position! It
makes a copy of the file into this folder and from that moment that file is not
supposed to be manipulated from outside. Being in the upload folder means that
files are understood as a part of the database content and should be managed by
TYPO3 only.

Proc.

TYPO3 Core APIs - 99

Key Datatype Description Scope
prepend_tname boolean [internal_type = db ONLY]

Will prepend the table name to the stored relations (so instead of storing "23" you
will store eg. "tt_content_23").

Proc.

dontRemapTablesOnCopy string
(list of tables)

[internal_type = db ONLY]

A list of tables which should not be remapped to the new element uids if the field
holds elements that are copied in the session.

Proc.

show_thumbs boolean Show thumbnails for the field in the TCEform Display

size integer Height of the selectorbox in TCEforms. Display

autoSizeMax integer If set, then the height of element listing selector box will automatically be adjusted
to the number of selected elements, however never less than "size" and never
larger than the integer value of "autoSizeMax" itself (takes precedence over
"size"). So "autoSizeMax" is the maximum height the selector can ever reach.

Display

selectedListStyle string If set, this will override the default style of element selector box (which is
“width:200px”).

Display

multiple boolean Allows the same item more than once in a list. Display /
Proc.

maxitems integer > 0 Maximum number of items in the selector box. (Default = 1) Display /
Proc?

minitems integer > 0 Minimum number of items in the selector box. (Default = 0) Display /
Proc?

wizards array [See section later for options] Display

Here follow some code listings as examples:

Example - References to database records
In this example up to 200 references to Content Elements can be made:

 1: 'records' => Array (
 2: 'label' => 'LLL:EXT:cms/locallang_ttc.php:records',
 3: 'config' => Array (
 4: 'type' => 'group',
 5: 'internal_type' => 'db',
 6: 'allowed' => 'tt_content',
 7: 'size' => '5',
 8: 'maxitems' => '200',
 9: 'minitems' => '0',
 10: 'show_thumbs' => '1'
 11:)
 12:),

In line 5 it is configured that the internal type of the group field is "db" and then it follows that the allowed tables you can
select from is "tt_content" (Content Elements table). This could be a list of tables which means you can mix references as you
like!

Line 8 defines that there can be only 200 references and line 10 shows that they should be listed with their icons to the right
of the selector box list.

In this case it wouldn't have made sense to use a "select" type field since the situation implies that records might be found all
over the system in a table which could potentially carry thousands of entries. In such a case the right thing to do is to use the
"group" field so you have the Element Browser available for selector of the records.

Example - Reference to another page
You will often see "group" type fields used when a reference to another page is required. This makes sense since pages can
hardly be presented effectively in a big selector box and thus the Element Browser that follows the "group" type fields is
useful. An example is the "General Record Storage page" reference:

TYPO3 Core APIs - 100

The configuration looks like:
 1: 'storage_pid' => Array (
 2: 'exclude' => 1,
 3: 'label' => 'LLL:EXT:lang/locallang_tca.php:storage_pid',
 4: 'config' => Array (
 5: 'type' => 'group',
 6: 'internal_type' => 'db',
 7: 'allowed' => 'pages',
 8: 'size' => '1',
 9: 'maxitems' => '1',
 10: 'minitems' => '0',
 11: 'show_thumbs' => '1'
 12:)
 13:),

Notice how "maxitems" in line 9 is used to enforce that only one relation is created despite the ability of the "group" type field
to create multiple references.

Example - Attaching images
When you want to attach files to a database record it is done by the group field like this:

Notice how the same image has apparently been added twice - or at least the filename was the same
("DSC_7102_background.jpg"). In the second case the name has been made unique by appending "_01" before the
extension. This happens because all files attached to records through the group type are copied to a location defined by the
"uploadfolder" setting in the configuration (see line 8 below). Therefore, having two files with identical names means one of
them must be renamed automatically.
 1: 'image' => Array (
 2: 'label' => 'LLL:EXT:lang/locallang_general.php:LGL.images',
 3: 'config' => Array (
 4: 'type' => 'group',
 5: 'internal_type' => 'file',
 6: 'allowed' => $GLOBALS['TYPO3_CONF_VARS']['GFX']['imagefile_ext'],
 7: 'max_size' => '1000',
 8: 'uploadfolder' => 'uploads/pics',
 9: 'show_thumbs' => '1',
 10: 'size' => '3',
 11: 'maxitems' => '200',
 12: 'minitems' => '0',
 13: 'autoSizeMax' => 40,
 14:)
 15:),

Notice how line 5 defines the "group" type to contain files.

In line 6 the list of allowed file extensions are defined (here, taking the default list of image types for TYPO3).

Line 7 defines the maximum kb size of files allowed.

Line 8 defines the storage folder in the filesystem where the files are copied to when attached to the record. The path is
relative to the PATH_site of TYPO3, one directory below PATH_typo3

Data format of "group" elements
Since the "group" element allows to store references to multiple elements we might want to look at how these references are
stored internally.

Storage methods

There are two main methods for this:

TYPO3 Core APIs - 101

● Stored in a comma list

● Stored with a join table (MM relation)

The default and most wide spread method is the comma list.

Reserved tokens

In the comma list the token "," is used to separate the values. In addition the pipe sign "|" is used to separate value from label
value when delivered to the interface. Therefore these tokens are not allowed in reference values, not even if the MM method
is used.

The "Comma list" method (default)

When storing references as a comma list the values are simply stored one after another, separated by a comma in between
(with no space around!). The database field type is normally a varchar, text or blob field in order to handle this.

From the examples above the four Content Elements will be stored as "26,45,49,1" which is the UID values of the records.
The images will be stored as their filenames in a list like
"DSC_7102_background.jpg,DSC_7181.jpg,DSC_7102_background_01.jpg".

Since "db" references can be stored for multiple tables the rule is that uid numbers without a table name prefixed are
implicitly from the first table in the allowed table list! Thus the list "26,45,49,1" is implicitly understood as
"tt_content_26,tt_content_45,tt_content_49,tt_content_1". That would be equally good for storage, but by default the "default"
table name is not prefixed in the stored string. As an example, lets say you wanted a relation to a Content Element and a
Page in the same list. That would look like "tt_content_26,pages_123" or alternatively "26,pages_123" where "26" implicitly
points to a "tt_content" record given that the list of allowed tables were "tt_content,pages".

The "MM" method

Using the MM method you have to create a new database table which you configure with the key "MM". The table must
contain a field, "uid_local" which contains the reference to the uid of the record that contains the list of elements (the one you
are editing). The "uid_foreign" field contains the uid of the reference record you are referring to. In addition a "tablename" and
"sorting" field exists if there are references to more than one table.

Lets take the examples from before and see how they would be stored in an MM table:

uid_local uid_foreign tablename sorting
[uid of the record you are editing] 26 tt_content 1

[uid of the record you are editing] 45 tt_content 2

[uid of the record you are editing] 49 tt_content 3

[uid of the record you are editing] 1 tt_content 4

Or for "tt_content_26,pages_123":

uid_local uid_foreign tablename sorting
[uid of the record you are editing] 26 tt_content 1

[uid of the record you are editing] 123 pages 2

Or for "DSC_7102_background.jpg,DSC_7181.jpg,DSC_7102_background_01.jpg":

uid_local uid_foreign tablename sorting
[uid of the record you are editing] DSC_7102_background.jpg N/A 1

[uid of the record you are editing] DSC_7181.jpg N/A 2

[uid of the record you are editing] DSC_7102_background_01.jpg N/A 3

API for getting the reference list

In t3lib/ the class "t3lib_loaddbgroup" is designed to transform the stored reference list values into an array where all uids are
paired with the right table name. Also, this class will automatically retrieve the list of MM relations. In other words, it provides
an API for getting the references from "group" elements into a PHP array regardless of storage method.

Passing the list of references to TCEforms

TYPO3 Core APIs - 102

Regardless of storage method, the reference list has to be "enriched" with proper title values when given to TCEforms for
rendering. In particular this is important for database records. Passing the list "26,45,49,1" will not give TCEforms a chance to
render the titles of the records.

The t3lib/ class "t3lib_transferdata" is doing such transformations (among other things) and this is how the transformation
happens:

Int. type: In Database: When given to TCEforms:
"db" 26,45,49,1 tt_content_26|%20adfs%20asdf%20asdf%20,tt_content_45|This%20is%20a%

20test%20%28copy%203%29,tt_content_49|%5B...%5D,tt_content_1|%5B...%
5D

"file" DSC_7102_background.jpg,DSC_7181.jp
g,DSC_7102_background_01.jpg

DSC_7102_background.jpg|DSC_7102_background.jpg,DSC_7181.jpg|
DSC_7181.jpg,DSC_7102_background_01.jpg|DSC_7102_background_01.jpg

The syntax is:
[ref. value]|[ref. label rawurlencoded],[ref. value]|[ref. label rawurlencoded],....

Values are transferred back to the database as a comma separated list of values without the labels but if labels are in the
value they are automatically removed.

Alternatively you can also submit each value as an item in an array; TCEmain will detect an array of values and implode it
internally to a comma list. (This is used for the "select" type, in renderMode "singlebox" and "checkbox").

Managing file references

When a new file is attached to a record the TCE will detect the new file based on whether it has a path prefixed or not. New
files are copied into the upload folder that has been configured and the final value list going into the database will contain the
new filename of the copy.

If images are removed from the list that is detected by simply comparing the original file list with the one submitted. Any files
not listed anymore are deleted.

Examples:

Current DB value: Submitted data from TCEforms New DB value: Processing done
first.jpg,second.jp
g

first.jpg,/www/typo3/fileadmin/newfil
e.jpg,second.jpg

first.jpg,newfile_01.jpg,second.jpg /www/typo3/fileadmin/newfile.jpg was copied
to "uploads/[some-dir]/newfile_01.jpg". The
filename was appended with "_01" because
another file with the name "newfile.jpg"
already existed in the location.

first.jpg,second.jp
g

first.jpg first.jpg "uploads/[some-dir]/second.jpg" was deleted
from the location.

['columns'][fieldname]['config'] / TYPE: "none"
This type will just show the value of the field in the backend. The field is not editable.

Key Datatype Description
type string [Must be set to "" (blank string!)]

pass_content boolean If set, then content from the field is directly outputted in the <div> section. Otherwise the content will be
passed through htmlspecialchars() and possibly nl2br() if there is configuration for rows.
Be careful to set this flag since it allows HTML from the field to be outputted on the page, thereby
creating the possibility of XSS security holes.

rows integer If this value is greater than 1 the display of the non-editable content will be shown in a <div> area trying
to simulate the rows/columns known from a "text" type element.

cols integer See "rows" and "size"

fixedRows boolean If this is set the <div> element will not automatically try to fit the content length but rather respect the
size selected by the value of the "rows" key.

size integer If rows is less than one, the "cols" value is used to set the width of the field and if "cols" is not found,
then "size" is used to set the width.
The measurements corresponds to those of "input" and "text" type fields.

['columns'][fieldname]['config'] / TYPE: "passthrough"
Can be saved/updated through TCE but the value is not evaluated in any way and the field has no rendering in the
TCEforms.

You can use this to send values directly to the database fields without any automatic evaluation. But still the update gets

TYPO3 Core APIs - 103

logged and the history/undo function will work with such values.

Since there is no rendering mode for this field type it is specifically fitted for direct API usage with the TCEmain class.

Key Datatype Description
type string [Must be set to "passthrough"]

Now follows a codelisting as example:

Example:
This field is found in a number of table, eg. the "pages" table. It is apparently used by the extension "impexp" to store some
information.
 'tx_impexp_origuid' => Array('config'=>array('type'=>'passthrough')),

Example:
In this example the extension "direct_mail" is adding some fields to the "tt_address" table but the fields are not editable
through TCEforms, just able to manipulate through TCE directly.
 // tt_address modified

t3lib_div::loadTCA('tt_address');
t3lib_extMgm::addTCAcolumns('tt_address',array(
 'module_sys_dmail_category' => Array('config'=>array('type'=>'passthrough')),
 'module_sys_dmail_html' => Array('config'=>array('type'=>'passthrough'))
));

['columns'][fieldname]['config'] / TYPE: "user"
Allows you to render a whole form field by a user function or class method.

Key Datatype Description
type string [Must be set to "user"]

userFunc string Function or method reference.
If you want to call a function, just enter the function name. The function name must be prefixed "user_"
or "tx_".
If you want to call a method in a class, enter "[classname]->[methodname]". The class name must be
prefixed "user_" or "tx_".

Two arguments will be passed to the function/method: The first argument is an array (passed by
reference) which contains the current information about the current field being rendered. The second
argument is a reference to the parent object (an instance of the t3lib_TCEforms class).

Notice: You must include the class manually on beforehand!

noTableWrapping boolean If set, then the output from the user function will not be wrapped in the usual table - you will have to do
that yourself.

Now follows a codelisting as example:

Example:
This field is rended by custom PHP code:

The configuration in TCA is as simple as this:
 1: 'TEST02' => Array (
 2: 'label' => 'TEST02: ',
 3: 'config' => Array (
 4: 'type' => 'user',
 5: 'userFunc' => 'user_class->user_TCAform_test',
 6:)
 7:),

In addition you have to make sure the class "user_class" is included and has the method "user_TCAform_test". This the
example above it looked like this:

TYPO3 Core APIs - 104

 1: class user_class {
 2: function user_TCAform_test($PA, $fobj) {
 3: return '
 4: <div style="
 5: border: 2px dashed #666666;
 6: width : 90%;
 7: margin: 5px 5px 5px 5px;
 8: padding: 5px 5px 5px 5px;"
 9: >
 10: <h2>My Own Form Field:</h2>
 11: <input
 12: name="'.$PA['itemFormElName'].'"
 13: value="'.htmlspecialchars($PA['itemFormElValue']).'"
 14: onchange="'.htmlspecialchars(implode('',$PA['fieldChangeFunc'])).'"
 15: '.$PA['onFocus'].'
 16: />
 17: </div>';
 18: }
 19: }

This is not the place to dig into more details about user defined forms. By this example you can start yourself up but you will
have to figure out by yourself what options are available in the $PA array and how to use them.

['columns'][fieldname]['config'] / TYPE: "flex"
Rendering a FlexForm element - essentially this consists of a hierarchically organized set of fields which will have their values
saved into a single field in the database, stored as XML.

Key Datatype Description
type string [Must be set to "flex"]

ds_pointerField string Fieldname in the record which points to the field where the key for “ds” is found

TYPO3 Core APIs - 105

Key Datatype Description
ds string Data Structure(s) defined in an array.

Each key is a value that can be pointed to by “ds_pointerField”. Default key is “default” which
is what you should use if you do not have a “ds_pointerField” value of course.

For each value in the array there are two options:
• Either enter XML directly
• Make a reference to an external XML file

Example with XML directly entered:

'config' => Array (
 'type' => 'flex',
 'ds_pointerField' => 'list_type',
 'ds' => array(
 'default' => '
 <T3DataStructure>
 <ROOT>
 <type>array</type>
 <el>
 <xmlTitle>
 <TCEforms>
 <label>The Title:</label>
 <config>
 <type>input</type>
 <size>48</size>
 </config>
 </TCEforms>
 </xmlTitle>
 </el>
 </ROOT>
 </T3DataStructure>
 ',
)
)

Example with XML in external file:
(File reference is relative)
'config' => Array (
 'type' => 'flex',
 'ds_pointerField' => 'list_type',
 'ds' => array(
 'default' => 'FILE:EXT:mininews/flexform_ds.xml',
)
)

ds_tableField string Contains the value “[table]:[fieldname]” from which to fetch Data Structure XML.

“ds_pointerField” is in this case the pointer which should contain the uid of a record from that
table.

This is used by TemplaVoila extension for instance where a field in the tt_content table points
to a TemplaVoila Data Structure record:

'tx_templavoila_flex' => Array (
 'exclude' => 1,
 'label' => '...',
 'displayCond' => 'FIELD:tx_templavoila_ds:REQ:true',
 'config' => Array (
 'type' => 'flex',
 'ds_pointerField' => 'tx_templavoila_ds',
 'ds_tableField' => 'tx_templavoila_datastructure:dataprot',
)
),

ds_pointerField_searchParent string Used to search for Data Structure recursively back in the table assuming that the table is a
tree table. This value points to the “pid” field.
See “templavoila” for example - uses this for the Page Template.

ds_pointerField_searchParent
_subField

string Points to a field in the “rootline” which may contain a pointer to the “next-level” template.
See “templavoila” for example - uses this for the Page Template.

Pointing to a Data Structure
Basically the configuration for a FlexForm field is all about pointing to the Data Structure which will contain form rendering
information in the application specific tag “<TCEforms>”.

For general information about the backbone of a Data Structure, please see the <T3DataStructure> chapter in the Data

TYPO3 Core APIs - 106

Formats section.

FlexForm facts
FlexForms create a form-in-a-form. The content coming from this form is still stored in the associated database field - but as
an XML structure (stored by t3lib_div::array2xml())!

The “TCA” information needed to generate the FlexForm fields are found inside a <T3DataStructure> XML document. When
you configure a FlexForm field in a Data Structure (DS) you can use basically all column types documented here for TCA.
The limitations are:

• “unique” and “uniqueInPid” evaluation is not available

• You cannot nest FlexForm configurations inside of FlexForms.

• Charset follows that of the current backend (that is “forceCharset” or the backend users language selection)

<T3DataStructure> extensions for “<TCEforms>”
For FlexForms the DS is extended with a tag, “<TCEforms>” which define all settings specific to the FlexForms usage.

Also a few meta tag features are used.

The tables below document the extension elements:

“Array” Elements:

Element Description Child elements
<meta> Can contain application specific meta settings. For FlexForms this

means a definition of how languages are handled in the form.
<langChildren>
<langDisable>

<[application tag]> In this case the application tag is “<TCEforms>” A direct reflection of a ['columns']
['fieldname']['config'] PHP array configuring
a field in TCA. As XML this is expressed
by array2xml()'s output. See example
below.

<ROOT><TCEforms> For <ROOT> elements in the DS you can add application specific
information about the sheet that the <ROOT> element represents.

<sheetTitle>
<sheetDescription>
<sheetShortDescr>

“Value” Elements:

Element Format Description
<langDisable> Boolean, 0/1 If set, then handling of localizations is disabled. Otherwise FlexForms will allow editing

of additional languages than the default according to “sys_languages” table contents.
The language you can select from is the language configured in “sys_languages” but
they must have ISO country codes set - see example below.

<langChildren> Boolean, 0/1 If set, then localizations are bound to the default values 1-1 (“value” level). Otherwise
localizations are handled on “structure level”

<sheetTitle> string Specifies the title of the sheet. Language splitted.

<sheetDescription> string Specifies a description for the sheet shown in the flexform. Language splitted.

<sheetShortDescr> string Specifies a short description of the sheet used in the tab-menu. Language splitted.

Sheets and FlexForms
FlexForms always resolve sheet definitions in a Data Structure. If only one sheet is defined that must be the “sDEF” sheet
(default). In that case no tab-menu for sheets will appear (see examples below).

FlexForm data format, <T3FlexForms>
When saving FlexForm elements the content is stored as XML using t3lib_div::array2xml() to convert the internal PHP array
to XML format. The structure is as follows:

“Array” Elements:

Element Description Child elements
<T3FlexForms> Document tag <meta>

<data>

<meta> Meta data for the content. For instance information about which sheet is
active etc.

<currentSheetId>
<currentLangId>

<data> Contains the data; sheets, language sections, field and values <sheet>

TYPO3 Core APIs - 107

Element Description Child elements
<sheet> Contains the data for each sheet in the form. If there are no sheets, the

default sheet “<sDEF>” is always used.
<sDEF>
<s_[sheet keys]>

<sDEF>
<[sheet keys]>

For each sheet it contains elements for each language. If
<meta><langChildren> is false then all languages are stored on this level,
otherwise only the <lDEF> tag is used.

<lDEF>
<l[ISO language code]>

<lDEF>
<[language keys]>

For each language the fields in the form will be available on this level. <[fieldname]>

<[fieldname]> For each fieldname there is at least one element with the value, <vDEF>. If
<meta><langChildren> is true then there will be a <v*> tag for each language
holding localized values.

<vDEF>
<v[ISO language code]>

<currentLangId> Numerical array of language ISO codes + “DEF” for default which are
currently displayed for editing.

<n[0-x]>

“Value” Elements:

Element Format Description
<vDEF>
<v[ISO language code]>

string Content of the field in default or localized versions

<currentSheetId> string Points to the currently shown sheet in the DS.

For syntax highlighted example, see below.

Example: Simple FlexForm
The extension “mininews” displays a FlexForm in the Plugin type content element. The form displays a template selector
box:

The DS used to render this field is found in the file “flexform_ds.xml” inside of the “mininews” extension. Notice the
<TCEforms> tags:

<T3DataStructure>
 <meta>
 <langDisable>1</langDisable>
 </meta>
 <ROOT>
 <type>array</type>
 <el>
 <field_templateObject>
 <TCEforms>
 <label>LLL:EXT:mininews/locallang_db.php:tt_content.pi_flexform.select_template<
/label>

 <config>
 <type>select</type>
 <items>
 <numIndex index=”0”>
 <numIndex index=”0”></numIndex>
 <numIndex index=”1”>0</numIndex>
 </numIndex>
 </items>
 <foreign_table>tx_templavoila_tmplobj</foreign_table>
 <foreign_table_where>
 AND tx_templavoila_tmplobj.pid=###STORAGE_PID###
 AND
tx_templavoila_tmplobj.datastructure="EXT:mininews/template_datastructure.xml"

TYPO3 Core APIs - 108

 AND tx_templavoila_tmplobj.parent=0
 ORDER BY tx_templavoila_tmplobj.title
 </foreign_table_where>
 <size>1</size>
 <minitems>0</minitems>
 <maxitems>1</maxitems>
 </config>
 </TCEforms>
 </field_templateObject>
 </el>
 </ROOT>
</T3DataStructure>

It's clear that the contents of <TCEforms> is a direct reflection of the field configurations we normally set up in the $TCA
array.

To configure the FlexForm field to use this Data Structure, the “mininews” extension simply includes this in the ext_tables.php
file:

 1: $TCA['tt_content']['types']['list']['subtypes_addlist'][$_EXTKEY.'_pi1']='pi_flexform';
 2: t3lib_extMgm::addPiFlexFormValue($_EXTKEY.'_pi1', 'FILE:EXT:mininews/flexform_ds.xml');

In line 1 the tt_content field “pi_flexform” is added to the display of fields when the Plugin type is selected and set on
“mininews_pi1”

In line 2 the DS xml file is configured to be the source of the FlexForm DS used.

If we browse the definition for the “pi_flexform” field in “tt_content” we will see this configuration:

As you can see two extension plugins, “newloginbox_pi1” and “mininews_pi1” has added pointers to their Data Structures.

Example: FlexForm with two sheets
In this example we create a flexform field with two “sheets”. Each sheet can contain a separate FlexForm structure.

....['config'] = array(
 'type' => 'flex',
 'ds' => array(
 'default' => '

<T3DataStructure>
 <sheets>
 <sDEF>
 <ROOT>
 <TCEforms>
 <sheetTitle>Default sheet</sheetTitle>
 </TCEforms>
 <type>array</type>
 <el>
 <header>
 <TCEforms>
 <label>Header</label>
 <config>
 <type>input</type>
 <size>30</size>
 </config>
 </TCEforms>
 </header>
 <message>

TYPO3 Core APIs - 109

 <TCEforms>
 <label>Message:</label>
 <config>
 <type>text</type>
 <cols>30</cols>
 <rows>5</rows>
 </config>
 </TCEforms>
 </message>
 </el>
 </ROOT>
 </sDEF>
 <s_welcome>
 <ROOT>
 <TCEforms>
 <sheetTitle>Second sheet</sheetTitle>
 </TCEforms>
 <type>array</type>
 <el>
 <show_forgot_password>
 <TCEforms>
 <label>Yes, I do:</label>
 <config>
 <type>check</type>
 </config>
 </TCEforms>
 </show_forgot_password>
 </el>
 </ROOT>
 </s_welcome>
 </sheets>
</T3DataStructure>

 '
)
);

The result from configuration is a form which looks like this:

Clicking “Second sheet” will now show the other Data Structure:

If you look at the XML stored in the database field this is how it looks:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes" ?>
<T3FlexForms>
 <meta>
 <currentSheetId>s_welcome</currentSheetId>
 </meta>
 <data>
 <sDEF>
 <lDEF>
 <header>
 <vDEF>This is a header</vDEF>
 </header>

TYPO3 Core APIs - 110

 <message>
 <vDEF>Here goes the message
This is another line in the message!</vDEF>
 </message>
 </lDEF>
 </sDEF>
 <s_welcome>
 <lDEF>
 <show_forgot_password>
 <vDEF>1</vDEF>
 </show_forgot_password>
 </lDEF>
 </s_welcome>
 </data>
</T3FlexForms>

Notice how the data of the two sheets are separated.

Example: Rich Text Editor in FlexForms
Creating a RTE in FlexForms is done by adding “defaultExtras” content to the <TCEforms> tag:
<TCEforms>

<config>
<type>text</type>
<cols>48</cols>
<rows>5</rows>

</config>
<label>Subtitle</label>
<defaultExtras>richtext[*]:rte_transform[mode=ts_css]</defaultExtras>

</TCEforms>

Handling languages in FlexForms
FlexForms allows you to handle translations of content in two ways. But before you can enable those features you have to
install the extension “static_info_tables” which contains country names and ISO-language codes which are the ones by which
FlexForms stores localized content:

Secondly, you have to configure languages in the Database:

And finally, you have to make sure that each of these languages points to the right ISO code:

Localization method #1:

Immediately you will see that the form has got a language selector and if you select both languages and save the form you
will see an additional set of fields for Danish:

TYPO3 Core APIs - 111

Notice: If the “<meta><langDisable>” value is true then you will not see any languages of course.

The data XML in the data base will look like this:
<?xml version="1.0" encoding="iso-8859-1" standalone="yes" ?>
<T3FlexForms>
 <meta>
 <currentSheetId>sDEF</currentSheetId>
 <currentLangId>
 <numIndex index=”0”>DEF</numIndex>
 <numIndex index=”1”>DA</numIndex>
 </currentLangId>
 </meta>
 <data>
 <sDEF>
 <lDEF>
 <header>
 <vDEF>This is a header</vDEF>
 </header>
 <message>
 <vDEF>Here goes the message
This is another line in the message!</vDEF>
 </message>
 </lDEF>
 <lDA>
 <header>
 <vDEF>Dette er en overskrift</vDEF>
 </header>
 <message>
 <vDEF>Her skal beskeden indsættes
Dette er en anden linie i beskeden.</vDEF>
 </message>
 </lDA>
 </sDEF>
 <s_welcome>
 <lDEF>
 <show_forgot_password>
 <vDEF>1</vDEF>
 </show_forgot_password>
 </lDEF>
 </s_welcome>
 </data>
</T3FlexForms>

Notice the tag <lDA> which contains the Danish translation!

Localization method #2:

TYPO3 Core APIs - 112

In the first method of localization each language can potentially contain a differently structured data set. This is possible
because as soon as a DS defines sections with array objects inside the number of objects can be individual!

The second method of localization handles each language on the value level instead, thus requiring a translation for each
and every field in the default language! You enable this by setting “<meta><langChildren>” to “1”.

The editing form will now look like this:

You can see that the Danish translation for the header is grouped with the default header and likewise for the “Message”
field.

The difference is also seen in the <T3FlexForms> content:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes" ?>
<T3FlexForms>
 <meta>
 <currentSheetId>sDEF</currentSheetId>
 <currentLangId>
 <numIndex index=”0”>DEF</numIndex>
 <numIndex index=”1”>DA</numIndex>
 </currentLangId>
 </meta>
 <data>
 <sDEF>
 <lDEF>
 <header>
 <vDEF>This is a header</vDEF>
 <vDA>Dette er en overskrift</vDA>
 </header>
 <message>
 <vDEF>Here goes the message
This is another line in the message!</vDEF>
 <vDA>Here goes the message
This is another line in the message!</vDA>
 </message>
 </lDEF>
 </sDEF>
 <s_welcome>
 <lDEF>
 <show_forgot_password>
 <vDEF>1</vDEF>
 </show_forgot_password>
 </lDEF>
 </s_welcome>
 </data>
</T3FlexForms>

You can see the Danish counterparts to the default values are stored in tags named “<vDA>” on the same level as “<vDEF>”
is located.

NOTICE: The two localization methods are NOT compatible! You cannot suddenly change from the one method to the other
without having to do some conversion of the data format. That is obvious when you look at how the two methods also require
different data structures underneath!

TYPO3 Core APIs - 113

['types'][key] section
You have to add at least one entry in the "types"-configuration before any of the configured fields from the ['columns'] section
will show up in TCEforms.

Required configuration
For instance, if you would like a form to look like below...:

... you could configure it with :
 140: 'types' => Array (
 141: '0' => Array('showitem' => 'hidden;;1, type, title, test_template'),

The key "showitem" lists the order in which to define the fields: "hidden, type, title, test_template"

Optional possibilities
The power of "types"-configuration is clear in the moment when you want the form composition of a record to depend on a
value from the record. From the example above, lets say we want the selector box "type" to define the composition of fields in
the form. This is configured like this:

 2: 'ctrl' => Array (
 3: 'title' => 'LLL:EXT:coreunittest/locallang_db.php:tx_coreunittest_1',
 4: 'label' => 'title',
 5: 'type' => 'type',
 6: 'crdate' => 'crdate',
...
 87: 'type' => Array (
 88: 'exclude' => 0,
 89: 'label' => 'LLL:EXT:coreunittest/locallang_db.php:tx_coreunittest_1.type',
 90: 'config' => Array (
 91: 'type' => 'select',
 92: 'items' => Array (
 93: Array('LLL:EXT:coreunittest/locallang_db.php:tx_coreunittest_1.type.I.0',
'0'),
 94: Array('LLL:EXT:coreunittest/locallang_db.php:tx_coreunittest_1.type.I.1',
'1'),
 95: Array('LLL:EXT:coreunittest/locallang_db.php:tx_coreunittest_1.type.I.2',
'2'),
 96: Array('LLL:EXT:coreunittest/locallang_db.php:tx_coreunittest_1.type.I.3',
'3'),
 97:),
 98: 'size' => 1,
 99: 'maxitems' => 1,
 100:)
 101:),

Line 5 defines that the field name "type" is to be used as pointer to a key in the types-configuration.

Line 87-101 shows the configuration of this selector box which turns out to be rather normal, having four static values.

In the end of the TCA configuration the "types" section contain four listings, one for each value of the selector box:

 140: 'types' => Array (
 141: '0' => Array('showitem' => 'hidden;;1, type, title, test_template'),
 142: '1' => Array('showitem' => 'title, test_template, hidden, type'),
 143: '2' => Array('showitem' => 'type, title'),
 144: '3' => Array('showitem' => 'type;;2'),
 145:),

If the "type" selector box has the value "0" (zero, "Mode 1") you will see the same as in the example above. If it is changed to
"1" (label "Mode 2"), then the form changes as well:

TYPO3 Core APIs - 114

The order of fields in this case is clearly the one defined in line 142.

Changing the "type" value to "Mode 3" means we will see this form:

And "Mode 4":

Default values
If no "type" field is defined the type value will default to "0" (zero). If the type value (coming from a field or being zero by
default) does not point to a defined index in the "types"-configuration, the configuration for key "1" will be used by default.

Notice: You must not show the same field more than once in the editing form. If you do, the field will not detect the value
properly.

Key Datatype Description
showitem string

(list of field
configuration
sets)

Required.
Configuration of the displayed order of fields in TCEforms.
The whole strings is divided by tokens according to a - unfortunately - complex ruleset.

• #1: Overall the value is divided by a "comma" (,). Each part represents the configuration for
a single field.

• #2: Each of the field configurations is further divided by a semi-colon (;). Each part of this
division has a special significance.
• Part 1: Fieldname reference (Required!)
• Part 2: Alternative fieldlabel (LS)
• Part 3: Palette number (referring to an entry in the "palettes" section).
• Part 4: Special configuration (splitted by colon (:)), eg. 'nowrap' and 'richtext[(list of keys

or *)]' (see section later)
• Part 5: Form style codes (see section later)

Notice: Instead of a real fieldname you can theoretically insert "--div--" and you will have a divider
line shown. However this is not rendered by default so it has no significance.

Another special fieldname, '--palette--', will insert a link to a palette (of course you need to
specify a palette and title then...)

subtype_value_field string
(fieldname)

Fieldname, which holds a value being a key in the 'subtypes_excludelist' array. This is used to
specify a secondary level of 'types' - basically hiding certain fields of those found in the types-
configuration, based on the value of another field in the row.

Example (from sysext/cms/tbl_tt_content.php):

'subtype_value_field' => 'list_type',
'subtypes_excludelist' => Array(
 '3' => 'layout',
 '1' => 'layout',
 '8' => 'layout',
 'indexed_search' => 'layout,bodytext',
)

subtypes_excludelist array See "subtype_value_field".

Syntax:
“[field value]” => “[commalist of fields (from the main types-config) which are excluded]”

TYPO3 Core APIs - 115

Key Datatype Description
subtypes_addlist array A list of fields to add when the "subtype_value_field" matches a key in this array.

See "subtype_value_field".

Syntax:
“[value]” => “[commalist of fields which are added]

Notice: that any transformation configuration used by TCE will NOT work because that
configuration is visible for the TCEforms class only during the drawing of fields. In other words
any configuration in this list of fields will work for display only.”

bitmask_value_field string
(fieldname)

Fieldname, which holds a value being the integer (bit-mask) for the 'bitmask_excludelist_bits'
array.
It works much like 'subtype_value_field' but excludes fields based on whether a bit from the
value field is set or not. See 'bitmask_excludelist_bits';
[+/-] indicates whether the bit [bit-number] is set or not.

Example:

'bitmask_value_field' => 'active',
'bitmask_excludelist_bits' => Array (
 '-0' => 'tmpl_a_subpart_marker,tmpl_a_description',
 '-1' => 'tmpl_b_subpart_marker,tmpl_b_description',
 '-2' => 'tmpl_c_subpart_marker,tmpl_c_description'
)

bitmask_excludelist_bits array See "bitmask_value_field"

“[+/-][bit-number]” => “[commalist of fields (from the main types-config) excluded]”

Now follows a codelisting as example:

Example - simple configuration:
This is a quite normal and simple configuration. In the "types" section the list of fields does not contain much additional stuff
except the first entry which configures "Part 5" - the colorscheme for the whole form.

Basically the "showitem" list is just listing the fieldnames which will be displayed.
 'types' => Array (
 '0' => Array('showitem' => 'name;;;;1-1-1, age, language, allergies, allergies_list,
institution, babysitting, other')
),

The result of this configuration looks like this:

Example - semi complex configuration:
This is a semi-complex example taken from the "mininews" extension. It does include configuration of the rich text editor
which is the main reason for the lengthyness. Notice the "palettes" definition which the example includes. The palette has
number "1" and will be triggered when the user puts the focus on the field "hidden" (according to the configuration in the
"types" list).

TYPO3 Core APIs - 116

 'types' => Array (
 '0' => Array('showitem' => 'hidden;;1;;1-1-1, datetime, title;;;;2-2-2, teaser;;;;3-3-3,
full_text;;;richtext[cut|copy|paste|formatblock|textcolor|bold|italic|underline|left|center|right|
orderedlist|unorderedlist|outdent|indent|link|table|image|line|chMode]:rte_transform[mode=ts_css|
imgpath=uploads/tx_mininews/rte/], front_page')
),
 'palettes' => Array (
 '1' => Array('showitem' => 'starttime, endtime, fe_group')
)

Example - complex configuration:
This is a part of the "types" definition for the "tt_content" table. This is one of the more advanced configurations, including
basically all the levels of options you can use:

'types' => Array (
 '1' => Array('showitem' => 'CType'),
 'header' => Array('showitem' => 'CType;;4;button;1-1-1, header;;3;;2-2-2, subheader;;8'),
 'text' => Array('showitem' => 'CType;;4;button;1-1-1, header;;3;;2-2-2, bodytext;;9;richtext
[paste|bold|italic|underline|formatblock|class|left|center|right|orderedlist|unorderedlist|outdent|
indent|link|image]:rte_transform[flag=rte_enabled|mode=ts];3-3-3, rte_enabled, text_properties'),
 'textpic' => Array('showitem' => 'CType;;4;button;1-1-1, header;;3;;2-2-2, bodytext;;9;richtext
[paste|bold|italic|underline|formatblock|class|left|center|right|orderedlist|unorderedlist|outdent|
indent|link|image]:rte_transform[flag=rte_enabled|mode=ts];3-3-3, rte_enabled, text_properties, --div--,
image;;;;4-4-4, imageorient;;2, imagewidth;;13,
 --palette--;LLL:EXT:cms/locallang_ttc.php:ALT.imgLinks;7,
 --palette--;LLL:EXT:cms/locallang_ttc.php:ALT.imgOptions;11,
 imagecaption;;5'),
 'rte' => Array('showitem' => 'CType;;4;button;1-1-1, header;;3;;2-2-2,
bodytext;;;nowrap:richtext[*]:rte_transform[mode=ts_images-ts_reglinks];3-3-3'),
 'image' => Array('showitem' => 'CType;;4;button;1-1-1, header;;3;;2-2-2, image;;;;4-4-4,
imageorient;;2, imagewidth;;13,
 --palette--;LLL:EXT:cms/locallang_ttc.php:ALT.imgLinks;7,
 --palette--;LLL:EXT:cms/locallang_ttc.php:ALT.imgOptions;11,
 imagecaption;;5'),
 'bullets' => Array('showitem' => 'CType;;4;button;1-1-1, header;;3;;2-2-2, layout;;;;3-3-3,
bodytext;;9;nowrap, text_properties'),
 'table' => Array('showitem' => 'CType;;4;button;1-1-1, header;;3;;2-2-2,
layout;;10;button;3-3-3, cols, bodytext;;9;nowrap:wizards[table], text_properties'),
 'splash' => Array('showitem' => 'CType;;4;button;1-1-1,
header;LLL:EXT:lang/locallang_general.php:LGL.name;;;2-2-2, splash_layout, bodytext;;;;3-3-3,
image;;6'),
 'uploads' => Array('showitem' => 'CType;;4;button;1-1-1, header;;3;;2-2-2, media;;;;5-5-5,
 select_key;LLL:EXT:cms/locallang_ttc.php:select_key.ALT.uploads,
 layout;;10;button, filelink_size,
 imagecaption;LLL:EXT:cms/locallang_ttc.php:imagecaption.ALT.uploads;;nowrap'),

['palettes'][key] section
"Palettes" represents a way to move less frequently used form fields out of sight. Palettes are groups of field which are
associated with a field in the main form. When this field is activated the palette fields are displayed. They are also known as
"secondary options" which is a more telling name I believe.

This configuration shows us that two palettes are defined (line 8 and 9) with key 1 and 2.
 1: 'types' => Array (
 2: '0' => Array('showitem' => 'hidden;;1, type;;1, title, test_template'),
 3: '1' => Array('showitem' => 'title, test_template;;1, hidden, type'),
 4: '2' => Array('showitem' => 'type, title'),
 5: '3' => Array('showitem' => 'type;;2'),
 6:),
 7: 'palettes' => Array (
 8: '1' => Array('showitem' => 'starttime, endtime, fe_group'),
 9: '2' => Array('showitem' => 'title'),
 10:)
 11:);

Palette 1 is referred to from "types"-configuration "0" by the field name "hidden" and "type" and "types" configuration "1" by
the field "test_template".

Palette 2 is referred to from "types"-configuration "3" by the field name "type".

The configuration means that next to the checkbox for the field "hidden" there is an icon which will activate the palette when
clicked:

TYPO3 Core APIs - 117

The palette fields appear in the top frame until another field in the main form is activated.

The other option is to enable "Show secondary options" (found in bottom of the form) which in some cases is more
convenient way to access palette fields:

This results in the palette fields being included into the form, but arranged horizontally instead of vertically:

Notice: You should not show the same field on more than one palette! If you do, the images (required and changed) will not
work in MSIE.

Key Datatype Description
showitem string

(list of
fieldnames)

Required.
Configuration of the displayed order of fields in the palette. Remember that a fieldname must not
appear in more than one palette and not more than one time!. Eg. 'hidden,starttime,endtime'

canNotCollapse boolean If set, then this palette is not allowed to 'collapse' in the TCEforms-display.
This basically means that if "Show secondary options" is not on, this palette is still displayed in the
main form and not linked with an icon.

Additional $TCA features
Special Configuration introduction
In relation to "types"-configuration it is possible to pass special parameters to a field only for certain type-configurations. For
instance you can define that a text field should not wrap text lines when displayed by a certain types configuration:
'0' => Array('showitem' => 'hidden;;1, type, title, test_template, TEST01;;;nowrap'),

Notice the keyword "nowrap" in position 4 for the field "TEST01". TEST01 itself is defined like this in [columns]:

 'TEST01' => Array (
 'label' => 'TEST01: Text field',
 'config' => Array (
 'type' => 'text',
)
),

The result becomes a small textarea field where lines are not broken automatically. This is very useful for entering codes:

TYPO3 Core APIs - 118

The point of setting "nowrap" in the types configuration is that under other "types"-configurations the field will wrap lines.
Likewise you can configure an RTE to appear for a field only if a certain type of the record is set and in other cases not.

Default Special Configuration (defaultExtras)
Since "types"-configuration does not apply for FlexForms and since a feature available as special configuration is sometimes
needed regardless of type value you can also configure the default value of the special configuration. This is done with a key
in the ['columns'][fieldname] array. Thus, the alternative configuration for the example above could be:
 'TEST01' => Array (
 'label' => 'TEST01: Text field',
 'config' => Array (
 'type' => 'text',
),
 'defaultExtras' => 'nowrap'
),

),
 'types' => Array (
 '0' => Array('showitem' => 'hidden;;1, type, title, test_template, TEST01'),

This works equally well.

Special Configuration options

Keywords
This table lists the options for keywords in special configuration. Each keyword is followed by a value wrapped in [] (square
brackets).

Keyword Description Value syntax Examples
nowrap Disables line wrapping in "text" type

fields.
[no options]

richtext Enables the RTE for the field and
allows you to set which toolbar
buttons are shown.

* or
keywords separated by "|"

richtext[cut|copy|paste] = only cut, copy and paste
options are shown.
richtext[*] = all RTE options
See RTE API definition later for more details.

rte_transform Configuration of RTE
transformations and other options.
See table below for a list of the key
values possible.

key1=value2|
key2=value2|
key3=value3|...

rte_transform[key1=value1|key2=value2|key3=value3]

rte_only If set, the field can only be edited
with a Rich Text Editor - otherwise it
will not show up.

boolean (0/1)

static_write This allows to configure a field value
to be written to a file.
See table below for value of f1-f5

f1|f2|f3|f4|f5

wizards Used to specifically enable wizards
configured for a field. See option
"enableByTypeConfig" in the wizard
configuration.

wizard-key1|wizard-key2
|...

wizards[table]

rte_transform[] key/value pairs
Keyword Description Value syntax Examples

flag This points to a field in the row
which determines whether or not the
RTE is disabled. If the value of the
field is set, then the RTE is
disabled.

Fieldname rte_transform[flag=rte_disable]

mode Configures which transformations
the content will pass through
between the database and the RTE
application.

Transformation keywords
separated by dashes ("-").
The order is calling order
when direction is "db".
See RTE API section for
list of transformations
available.

rte_transform[mode=ts_css-images]

imgpath This sets an alternative path for
Rich Text Editor images. Default is
configured by the value
TYPO3_CONF_VARS["BE"]
["RTE_imageStorageDir"] (default is
“uploads/”)

path relative to
PATH_site, eg.
“uploads/rte_test/”

TYPO3 Core APIs - 119

Example - Setting up Rich Text Editors
This sets up a Rich Text Editor with all possible tool bar buttons available, no transformations added or anything else:
 'TEST01' => Array (
 'label' => 'TEST01: Text field',
 'config' => Array (
 'type' => 'text',
),
 'defaultExtras' => 'richtext[*]'
),

This example is from the "mininews" extension which offers a RTE for editing the content of website news. This includes a
limited list of toolbar buttons and a transformation of content ("ts_css") as well as a definition of an alternative storage path for
uploaded images in the RTE ("uploads/tx_mininews/rte/")
richtext[cut|copy|paste|formatblock|textcolor|bold|italic|underline|left|center|right|orderedlist|
unorderedlist|outdent|indent|link|table|image|line|chMode]:rte_transform[mode=ts_css|
imgpath=uploads/tx_mininews/rte/]

The configuration for the RTE in the Content Elements is very similar regarding the enabled buttons. But the "rte_transform"
values are slightly different. Here the field "rte_enabled" will disable the RTE if true (this field is a checkbox) and the
transformation is "ts".
rte_transform[flag=rte_enabled|mode=ts]

static_write[] parameters
Keyword Description

f1 The field name which contains the name of the file being edited. This filename should be relative to the path configured
in $TYPO3_CONF_VARS[“BE”][“staticFileEditPath”] (which is "fileadmin/static/" by default).

f2 The field name which will also receive a copy of the content (in the database).
This should probably be the field name that carries this configuration.

f3 The field name containing the alternative subpart marker used to identify the editable section in the file.
The default marker is ###TYPO3_STATICFILE_EDIT### and may be encapsulated in HTML comments. There must be
two markers, one to identify the beginning and one for the end of the editable section.
Optional.

f4 The field name of the record which - if true - indicates that the content should always be loaded into the form from the file
and not from the duplicate field in the database.

f5 The field name which will receive a status message as a short text string.
Optional.

Example - Write to static file
This setup configures two fields in a record to point to a file and edit content in it between two markers:

 'TEST01' => Array (
 'label' => 'TEST01: Text field',
 'config' => Array (
 'type' => 'text',
),
 'defaultExtras' => 'static_write[TEST02|TEST01|||]'
),

The field "TEST02" must contain a filepath relative to "fileadmin/static/". In this case the filename is "static_write_file.txt".

The content of "fileadmin/static/static_write_file.txt" is like this:
outside

TYPO3 Core APIs - 120

###TYPO3_STATICFILE_EDIT###
Hello World!
###TYPO3_STATICFILE_EDIT###
outside below

When the content of the "TEST01" field is edited the content between the markers "###TYPO3_STATICFILE_EDIT###" is
updated as well.

You can study a fullblown configuration of these features in the extension called "static_file_edit".

Wizards Configuration
Wizards are configurable for some field types, namely “input”, “text”, "select" and "group" types. They provide a way to insert
helper-elements, links to wizard scripts etc.

A well known example of a wizard application is the form wizard:

The wizard is configured for the text area field and appears as an icon to the right. Clicking the icon will guide the user to a
view where the "cryptic" form code is presented in a more user friendly interface:

Another example of wizards are the new / edit / list links which are available for "group" or "select" type fields:

TYPO3 Core APIs - 121

Configuration of wizards
The value of the “wizards” key in the field config-array is an array. Each key is yet an array which configures the individual
wizards for a field. The order of the keys determines the order the wizards are displayed. The key-values themselves play no
important role (except from a few reserved words listetd in a table below).

The configuration for the new / edit / list links above looks like this:
 1: 'usergroup' => Array (
 2: 'label' => 'Group:',
 3: 'config' => Array (
 4: 'type' => 'select',
 5: 'foreign_table' => 'be_groups',
 6: 'foreign_table_where' => 'ORDER BY be_groups.title',
 7: 'size' => '5',
 8: 'maxitems' => '20',
 9: 'wizards' => Array(
 10: '_PADDING' => 1,
 11: '_VERTICAL' => 1,
 12: 'edit' => Array(
 13: 'type' => 'popup',
 14: 'title' => 'Edit usergroup',
 15: 'script' => 'wizard_edit.php',
 16: 'popup_onlyOpenIfSelected' => 1,
 17: 'icon' => 'edit2.gif',
 18: 'JSopenParams' => 'height=350,width=580,status=0,menubar=0,scrollbars=1',
 19:),
 20: 'add' => Array(
 21: 'type' => 'script',
 22: 'title' => 'Create new group',
 23: 'icon' => 'add.gif',
 24: 'params' => Array(
 25: 'table'=>'be_groups',
 26: 'pid' => '0',
 27: 'setValue' => 'prepend'
 28:),
 29: 'script' => 'wizard_add.php',
 30:),
 31: 'list' => Array(
 32: 'type' => 'script',
 33: 'title' => 'List groups',
 34: 'icon' => 'list.gif',
 35: 'params' => Array(
 36: 'table'=>'be_groups',
 37: 'pid' => '0',
 38:),
 39: 'script' => 'wizard_list.php',
 40:)
 41:)
 42:)
 43:),

The wizard configuration takes place in line 9 and throughout. Two reserved keywords are used in line 10 and 11 to set
arrangement settings for the display of icons.

Then a new wizard is configured in lines 12 (edit), 20 (add) and 31 (list).

Reserved keys
Each wizard is identified by a key string. However some strings are reserved for general configuration. These are listed in this
table and as a rule of thumb they are prefixed with an underscore ("_"):

Key Type Description
_POSITION string Determines the position of the wizard-icons/titles.

Default is “right”.
Possible values are “left”, “top”, “bottom”.

_ VERTICAL boolean If set, the wizard icons (if more than one) will be positioned in a column (vertically) and not a row
(horizontally, which is default)

_ DISTANCE int+ The distance in pixels between wizard icons (if more than one).

_PADDING int+ The cellpadding of the table which keeps the wizard icons together.

TYPO3 Core APIs - 122

Key Type Description
_VALIGN string valign attribute in the table holding things together.

_HIDDENFIELD boolean If set, the field itself will be a hidden field (and so not visible...)

[any other key] PHP-Array Configuration of the wizard types, see below.

General configuration options
This table lists the general configuration options for (almost) all wizard types. In particular the value of the "type" key is
important because it denotes what additional options are available.

Key Type Description
type string Defines the type of wizard. The options are listed as headlines in the table below.

This setting is required!

title string (LS) This is the title of the wizard. For those wizards which require a physical representation - eg a
link - this will be the link if no icon is presented.

icon fileref This is the icon representing the wizard.
If the first 3 chars are NOT “../” then the file is expected to be in “t3lib/gfx/”. So to insert custom
images, put them in “../typo3conf/” or so. You can also prefix icons from extensions with
"EXT:ext/[extension key]/directory.../". Generally, the format is the same as for referring to icons
for selector box options.

If the icon is not set, the title will be used for the link.

enableByTypeConfi
g

boolean If set, then the wizard is enabled only the in Special Configuration in the types are set to “wizards
[list of wizard-keys]”. See wizard section.

RTEonly boolean If set, then this wizard will appear only if the wizard is presented for a RTE field.

hideParent array If set, then the real field will not be shown (but rendered as a hidden field). In “hideParent” you
can configure the non-editable display of the content as if it was a field of the “none” type. The
options are the same as for the “config” key for “none” types.

Specific wizard configuration options based on type
Key Type Description

Type: script
Creates a link to an external script which can do "context sensitive" processing of the field. This is how the Form and Table wizards are
used.

notNewRecords boolean If set, the link will appear only if the record is not new (that is, it has a proper UID)

script PHP-script filename If the first 3 chars are NOT “../” then the file is expected to be in “typo3/”. So to link to custom
script, put it in “../typo3conf/”. File reference can be prefixed "EXT:[extension key]/" to point to a
file inside an extension.
A lot of parameters are passed to the script as GET-vars in an array, P.

params array Here you can put values which are passed to your script in the P array.

popup_onlyOpen
IfSelected

boolean If set, then an element (one or more) from the list must be selected. Otherwise the popup will not
appear and you will get a message alert instead. This is supposed to be used with the
wizard_edit.php script for editing records in "group" type fields.

Type: popup (+colorbox)
Creates a link to an external script opened in a pop-up window.

notNewRecords boolean See above, type “script”

script PHP-script filename See above, type “script”

params See above, type “script”

JSopenParams string Parameters to open JS window:

Example:

"JSopenParams" =>
"height=300,width=250,status=0,menubar=0,scrollbars=1",

Type: userFunc
Calls a user function/method to produce the wizard or whatever they are up to.

notNewRecords boolean See above, type “script”

TYPO3 Core APIs - 123

Key Type Description
userFunc string Calls a function or a method in a class.

Methods: [classname]->[methodname]

Functions: [functionname]
The function/class must be included on beforehand. This is adviced to be done within the
localconf.php file.
Two parameters are passed to the function/method: 1) An array with parameters, much like the
ones passed to scripts. One key is special though: the “item” key, which is passed by reference.
So if you alter that value it is reflected back! 2) $this (reference to the TCEform-object).
The content returned from the function call is inserted at the position where the the icon/title
would normally go.

Type: colorbox
Renders a square box (table) with the background color set to the value of the field. The id-attribute is set to a md5-hash so you might
change the color dynamically from pop-up- wizard.
The icon is not used, but the title is given as alt-text inside the color-square.

dim W x H, pixels Determines the dimensions of the box. Default is 20 pixels.

"dim" => "50x20",
tableStyle style-attribute

content in table-tag
Sets the border style of the table, eg:

"tableStyle" => "border:solid 1px black;"
exampleImg string Reference to a sample (relative to PATH_typo3 directory).

You can prefix with "EXT:" to get image from extension.
An image width of 350 is optimal for display.

Example:
'exampleImg' => 'gfx/wizard_colorpickerex.jpg'

Type: select
This renders a selector box. When a value is selected in the box, the value is transferred to the field and the field (default) element is
thereafter selected (this is a blank value and the label is the wizard title).
“select” wizards make no use of the icon.
The “select” wizard's select-properties can be manipulated with the same number of TSconfig options which are available for “real” select-
types in TCEFORM.[table].[field]. The position of these properties is “TCEFORM.[table].[field].wizards.[wizard-key]”.

mode append, prepend,
[blank]

Defines how the value is processed: Either added to the front or back or (default) substitutes the
existing.

items,
foreign_table_
etc...

Options related to
the selection of
elements known
from “select” form-
element type in
$TCA.

Example:

"items" => Array(
Array("8 px","8"),
Array("10 px","10"),
Array("11 px","11"),
Array("12 px","12"),
Array("14 px","14"),
Array("16 px","16"),
Array("18 px","18"),
Array("20 px","20")

)

In the next section all the default core wizard scripts are demonstrated with examples. Before that, here is a few examples of
wizards that does not require an external script.

Example - Selector box of preset values
You can add a selector box containing preset values next to a field:

When an option from the selector box is selected it will be transferred to the input field of the element. The mode of transfer
can be either substitution (default) or prepending or appending the value to the existing value.

The example above is achieved by this configuration:
 1: 'TEST01' => Array (
 2: 'label' => 'TEST01: Preset values',
 3: 'config' => Array (
 4: 'type' => 'input',
 5: 'size' => '10',

TYPO3 Core APIs - 124

 6: 'wizards' => array(
 7: 'select' => array(
 8: 'type' => 'select',
 9: 'mode' => '',
 10: 'items' => array(
 11: array('Label 1', 'Value 1'),
 12: array('Label 2', 'Value 2'),
 13: array('Label 3', 'Value 3'),
 14:)
 15:),

Example - User defined wizard (processing with PHP function)
The "userFunc" type of wizard allows you to render all the wizard code yourself. Theoretically, you could produce all of the
other wizard kinds ("script", "popup", "colorbox" etc) with your own user function rendering the similar HTML.

In this example I will do two things with the wizard:

● show how you can manipulate the HTML code of the form field the wizard is attached to

● Add two links which access the content of the form field.

The result looks like this:

The configuration needed is this:
 1: 'wizards' => array(
 2: 'uproc' => array(
 3: 'type' => 'userFunc',
 4: 'userFunc' => 'user_class->user_TCAform_procWizard',
 5: 'params' => array(
 6: 'wrapTag' => 'u'
 7:)
 8:),

And obviously, you need the code listing of the class, "user_class", as well:

 1: class user_class {
 2: function user_TCAform_procWizard($PA, $fobj) {
 3: // Wrapping the field item in a <div> with border.
 4: // Notice that $PA['item'] is passed by reference, so any manipulation
 5: // is automatically affecting the field without explicitly returning a value!
 6: $PA['item'] = '<div style="border: maroon 4px dashed;">'.$PA['item'].'</div>';
 7:
 8: // Adding wizard HTML code: Showing value in JavaScript ALERT box:
 9: $onclick = "alert('This is the field value: ' + ".
 10: "document.".$PA['formName']."['".$PA['itemName']."'].value);".
 11: "return false;";
 12: $output = '[Show field value]

';
 13:
 14: // Adding wizard HTML code: Showing value in JavaScript ALERT box:
 15: $wTagBegin = '<'.$PA['params']['wrapTag'].'>';
 16: $wTagEnd = '</'.$PA['params']['wrapTag'].'>';
 17: $onclick = "document.".$PA['formName']."['".$PA['itemName']."'].value=".
 18: "'".$wTagBegin."' + document.".$PA['formName']."['".$PA['itemName']."'].value
+ '".$wTagEnd."';".
 19: implode('',$PA['fieldChangeFunc']). // Necessary to tell TCEforms that the
value is updated.
 20: "return false;";
 21: $output.= ''.
 22: htmlspecialchars('[Wrap in '.$wTagBegin.'...'.$wTagEnd.']').
 23: '';
 24:
 25: // Return Wizard HTML:
 26: return $output;
 27: }
 28: }

In line 6 you see how the form field is wrapped in a <div> tag. Notice how all you need to do is to change the value of $PA
['item'] since that value is passed by reference to the function and therefore doesn't need a return value - only to be changed.

In line 9-12 you see the first link created. It just reads the current value of the <input> field and shows in an alert box.

In line 15-23 you see how the value of the key "wrapTag" from the "params" array (reserved space for user defined
parameters) is used to create a link which will wrap whatever content of the input field in an HTML tag, in this case a <u> tag.

Finally the wizard HTML created is returned.

TYPO3 Core APIs - 125

Obviously you will have to find out what kind of information is hidden in the $PA variable. A TYPO3 specific way of doing this
is to use "debug($PA);" which will output the content of the array in a nicely formatted table. In PHP there are native functions
like "print_r" or "vardump".

Wizard scripts in the core
The wizard interface allows you to use any PHP-script for your wizards but there is a useful set of default wizard scripts
available in the core of TYPO3. These are found in PATH_typo3 and are all prefixed "wizard_" (except "browse_links.php").

Below is a description of each of them including a description of their special parameters and an example of usage.

wizard_add.php
This script links to a form which allows you to create a new record in a given table which may optionally be set as the value
on return to the real form.

Key Type Description
table string Table to add record in.

pid int pid of the new record.
You can use the “markers” (constants) as values instead if you wish:

###CURRENT_PID###
###THIS_UID###
###STORAGE_PID###
###SITEROOT###

(see TCA/select for description)

setValue “prepend”, “set”,
“append”

“set” = the field will be force to have the new value on return
“append”/“prepend” = the field will have the value appended/prepended.
You must set one of these values.

In this example I have added the wizard script "wizard_add.php" to the well known Frontend User Group selector:

When the wizard icon is clicked the user is directed to a form where a new frontend user group can be created:

When the new group is saved and the user clicks the close button of the form the new group is automatically inserted as the
current value.

The configuration looks like this:
 1: 'fe_group' => Array (
 2: 'exclude' => 1,
 3: 'label' => 'LLL:EXT:lang/locallang_general.php:LGL.fe_group',
 4: 'config' => Array (
 5: 'type' => 'select',
 6: 'items' => Array (
 7: Array('', 0),
 8: Array('LLL:EXT:lang/locallang_general.php:LGL.hide_at_login', -1),
 9: Array('LLL:EXT:lang/locallang_general.php:LGL.any_login', -2),
 10: Array('LLL:EXT:lang/locallang_general.php:LGL.usergroups', '--div--')
 11:),
 12: 'foreign_table' => 'fe_groups',
 13: 'wizards' => array(
 14: 'add' => Array(
 15: 'type' => 'script',
 16: 'title' => 'Add Frontend Group',
 17: 'icon' => 'add.gif',
 18: 'params' => Array(
 19: 'table' => 'fe_groups',
 20: 'pid' => '###STORAGE_PID###',
 21: 'setValue' => 'set'
 22:),

TYPO3 Core APIs - 126

 23: 'script' => 'wizard_add.php'
 24:),
 25:)
 26:)
 27:),

Line 15 defines the type to be "script" which is set to "wizard_add.php" in line 23. The parameters that instructs the Add-
wizard how to handle the creation is done in line 19-21; The table is of course fe_groups and the pid where the user is
created is the Storage Folder set for the website. Of course this requires a storage folder to exist. Finally, "setValue" tells the
wizard script that the uid of the new record should substitute any current value.

wizard_edit.php
The Edit wizard gives you a shortcut to edit references in "select" or "group" type form elements.

The configuration below is what sets up this wizard.
 1: 'wizards' => array(
 2: 'edit' => Array(
 3: 'type' => 'popup',
 4: 'title' => 'Edit usergroup',
 5: 'script' => 'wizard_edit.php',
 6: 'icon' => 'edit2.gif',
 7: 'JSopenParams' => 'height=350,width=580,status=0,menubar=0,scrollbars=1',
 8:),

This time the type fitting the wizard script best is the "popup" type. It could have been the "script" type as well, but it just
works slightly better in this case if it is a pop-up so we don't leave the original form.

There are no parameters to pass along like there were for the Add wizard.

wizard_list.php
This links to the Web>List module for only one table and allows the user to manipulate stuff there.

By clicking the icon you will get to the Web>List module. Notice how the "Back" link is found in the upper right corner, taking
you back to the edit form.

TYPO3 Core APIs - 127

This wizard has a few parameters to configuration in the "params" array:

Key Type Description
table string Table to manage records for

pid int id of the records you wish to list.
You can use the “markers” (constants) as values instead if you wish:

###CURRENT_PID###
###THIS_UID###
###STORAGE_PID###
###SITEROOT###

(see TCA/select for description)

The configuration look like this:
 1: 'wizards' => array(
 2: 'list' => Array(
 3: 'type' => 'script',
 4: 'title' => 'List groups',
 5: 'icon' => 'list.gif',
 6: 'params' => Array(
 7: 'table'=>'fe_groups',
 8: 'pid' => '###STORAGE_PID###',
 9:),
 10: 'script' => 'wizard_list.php',
 11:),

The type is also the "script" type. In the "params" array the table and pid passed to the script is set.

wizard_colorpicker.php
The colorpicker wizard allows you to select a HTML color value from a user friendly pop-up box. The wizard type is "colorbox"
which will first of all add a colored box next to an input field:

The color of the box is set to the value of the text field. Clicking the box will open a popup window with the color picker wizard
script showing itself:

TYPO3 Core APIs - 128

Here you can select from the web-color matrix, pick a color from the sample image or select a HTML-color name from a
selector box.

The configuration needed looks like this:
 1: 'TEST01' => Array (
 2: 'label' => 'TEST01: Color picker wizard',
 3: 'config' => Array (
 4: 'type' => 'input',
 5: 'size' => '30',
 6: 'wizards' => array(
 7: 'colorpick' => array(
 8: 'type' => 'colorbox',
 9: 'title' => 'Color picker',
 10: 'script' => 'wizard_colorpicker.php',
 11: 'dim' => '20x20',
 12: 'tableStyle' => 'border: solid 1px black; margin-left: 20px;',
 13: 'JSopenParams' => 'height=550,width=365,status=0,menubar=0,scrollbars=1',
 14: 'exampleImg' => 'gfx/wizard_colorpickerex.jpg',
 15:)
 16:)
 17:)
 18:),

Notice the wizard type is "colorbox".

wizard_forms.php
The forms wizard is used typically with the Content Elements, type "Mailform". It allows to edit the code-like configuration of
the mail form with a nice editor. This is shown in the introduction to Wizards above.

This is the available parameters:

Key Type Description
xmlOutput boolean If set, the output from the wizard is XML instead of the strangely formatted TypoScript form-

configuration code.

The configuration used for the editor in Content Elements looks like this:
'forms' => Array(
 'notNewRecords' => 1,
 'enableByTypeConfig' => 1,
 'type' => 'script',
 'title' => 'Forms wizard',
 'icon' => 'wizard_forms.gif',
 'script' => 'wizard_forms.php?special=formtype_mail',
 'params' => array('xmlOutput' => 0)
)

TYPO3 Core APIs - 129

wizard_table.php
The tables wizard is used typically with the Content Elements, type "Table". It allows to edit the code-like configuration of the
tables with a nice editor.

This is the available parameters:

Key Type Description
xmlOutput boolean If set, the output from the wizard is XML instead of the TypoScript form-configuration code.

This is the configuration code used for the table wizard in the Content Elements:
'table' => Array(
 'notNewRecords' => 1,
 'enableByTypeConfig' => 1,
 'type' => 'script',
 'title' => 'Table wizard',
 'icon' => 'wizard_table.gif',
 'script' => 'wizard_table.php',
 'params' => array('xmlOutput' => 0)
),

wizard_rte.php
This wizard is used to show a "full-screen" Rich Text Editor field. The configuration below shows an example taken from the
Text field in Content Elements:
'RTE' => Array(
 'notNewRecords' => 1,
 'RTEonly' => 1,
 'type' => 'script',
 'title' => 'LLL:EXT:cms/locallang_ttc.php:bodytext.W.RTE',
 'icon' => 'wizard_rte2.gif',
 'script' => 'wizard_rte.php',
),

wizard_tsconfig.php
This wizard is used for the TSconfig fields and TypoScript Template "Setup" fields. It is specialized for that particular
situations and it is not likely you will need it for anything on your own.

browse_links.php
The "Links" wizard is used many places where you want to insert link references. Not only in the Rich Text Editor but also in
"typolink" fields:

Clicking the wizard icons opens the Element Browser window:

TYPO3 Core APIs - 130

Such a wizard can be configured like this:
'link' => Array(
 'type' => 'popup',
 'title' => 'Link',
 'icon' => 'link_popup.gif',
 'script' => 'browse_links.php?mode=wizard',
 'JSopenParams' => 'height=300,width=500,status=0,menubar=0,scrollbars=1'
)

Notice how the "browse_links.php" script requires an extra parameter since it has to return content back to the input field (and
not the RTE for instance which it also supports).

$PAGES_TYPES
$PAGES_TYPES defines the various types of pages (field: doktype) the system can handle and what restrictions may apply
to them. Here you can set the icon and especially you can define which tables are allowed on a certain pagetype (doktype).

NOTE: The "default" entry in the $PAGES_TYPES-array is the "base" for all types, and for every type the entries simply
overrides the entries in the "default" type!!

This is the default array as set in t3lib/stddb/tables.php:

$PAGES_TYPES = Array(
 '254' => Array(// Doktype 254 is a 'sysFolder' - a general purpose storage
 'type' => 'sys',
 'icon' => 'sysf.gif',
 'allowedTables' => '*'
),
 '255' => Array(// Doktype 255 is a recycle-bin.
 'type' => 'sys',
 'icon' => 'recycler.gif',
 'allowedTables' => '*'
),
 'default' => Array(
 'type' => 'web',
 'icon' => 'pages.gif',
 'allowedTables' => 'pages',
 'onlyAllowedTables' => '0'
)
);

Each array has the following options available:

Key Description
type Can be "sys" or "web"

icon Alternative icon.
The file reference is on the same format "iconfile" in [ctrl] section of TCA

allowedTables The tables that may reside on pages with that "doktype".
Commalist with tables allowed on this page doktype. "*" = all

onlyAllowedTables Boolean. If set, the tce_main class will not allow a shift of doktype if unallowed records are on the page.

TYPO3 Core APIs - 131

Notice: All four options must be set for the default type while the rest can choose as they like.

White $PAGES_TYPES is most significant, there are a few other global variables which deserves a mention in relation to
$TCA:

$ICON_TYPES
With $ICON_TYPES you can assign alternative icons to pages records based on the field 'module' in pages table. Each key
is a value from the "module" field of page records and the value is an array with a key/value pair, eg. "icon" =>
"modules_shop.gif". The file reference is on the same format "iconfile" in [ctrl] section of TCA

This is the configuration found in "cms" extension and setting icons for some legacy extensions:
 // Setting ICON_TYPES
 $ICON_TYPES = Array(
 'shop' => Array('icon' => 'modules_shop.gif'),
 'board' => Array('icon' => 'modules_board.gif'),
 'news' => Array('icon' => 'modules_news.gif'),
 'dmail' => Array('icon' => 'modules_dmail.gif'),
 'fe_users' => Array('icon' => 'modules_fe_users.gif'),
 'approve' => Array('icon' => 'modules_approvals.gif')
);

Usage of $ICON_TYPES is deprecated.

$LANG_GENERAL_LABELS
Commonly used language labels which can be used in the $TCA array and elsewhere. Has become obsolete - just use the
values of each entry directly.

For backwards compatibility $LANG_GENERAL_LABELS are still available but deprecated. This is the default values:
$LANG_GENERAL_LABELS = array(
 'endtime' => 'LLL:EXT:lang/locallang_general.php:LGL.endtime',
 'hidden' => 'LLL:EXT:lang/locallang_general.php:LGL.hidden',
 'starttime' => 'LLL:EXT:lang/locallang_general.php:LGL.starttime',
 'fe_group' => 'LLL:EXT:lang/locallang_general.php:LGL.fe_group',
 'hide_at_login' => 'LLL:EXT:lang/locallang_general.php:LGL.hide_at_login',
 'any_login' => 'LLL:EXT:lang/locallang_general.php:LGL.any_login',
 'usergroups' => 'LLL:EXT:lang/locallang_general.php:LGL.usergroups',
);

Loading the full $TCA dynamically
You may load table descriptions dynamically (as needed) from separate files using the function t3lib_div::loadTCA
($tablename) where $tablename is the name of the table you wish to load a complete description of.

Dynamic tables must always be configured with a full [ctrl]-section (and [feInterface] section if needed). That is, it must be
represented by $TCA[$table]['ctrl']. If the table is dynamic, the value of [ctrl][dynamicConfigFile] points to an includefile with
the full array in.

The loadTCA-function determines whether a table is fully loaded based on whether $TCA[$table][columns] is an array. If it is
found to be an array the function just returns - else it loads the table if there is a value for “dynamicConfigFile”

The table “pages” must not be dynamic. All others can be in principle. You can also define more than one table in a
dynamicConfigFile - as long as the $TCA array is correctly updated with table information it doesn't matter if a file contains
configuration for more than the requested table - although the requested table should of cause always be configured,
because it's expected to be. In fact there is not much error checking; The function loadTCA simply includes the file in blind
faith that this action will fully configure the table in question.

Locating places where t3lib_div::loadTCA call is needed
To find places in your backend code where this should probably be implemented search for:

"each($TCA)" - This is potentially dangerous in a construction like this:
while(list($table,$config)=each($TCA))

where $config would obtain non-complete content. Instead it should look like:
while(list($table)=each($TCA)) {

t3lib_div::loadTCA($table);
$config=$TCA[$table]
...

}

TYPO3 Core APIs - 132

\[“?(palettes|types|columns|interface)”?\] (regex) - to find places where the palettes, types, columns and interfaces keys
are used - which would require the whole array to be loaded!

It's recommended to always call the function t3lib_div::loadTCA() before using the non-[ctrl] sections of the $TCA array. The
function returns immediately if the table is already loaded, so the overhead should be small and the importance is great.

Benchmarks on dynamic tables:
Module tables.php with all configuration Dynamic loading

Cache No cache Cache No cache

Web>List (loads all) 173 ms 322 ms 177 ms 328 ms

Web>Info (loads none) 72 ms 174 ms 66 ms 136 ms

Benchmarks on a PIII/500 MHz Linux PHP4.1.2/Apache, 256 MB RAM. PHP-Cache is PHP-accelerator. All figures are
parsetimes in milliseconds.

Analysis:
What we see is, when showing a page in Web>List where all tables are loaded, the dynamic loading of tables includes a little
overhead (177-173=4 ms) regardless of script-caching. This seems fair, probably due to file operations. It's also evident that
the script-caching boosts the parsing considerably in both cases, saving approximately 150 ms in parsetime!

The Web>Info module does not load any tables (at least not in the mode, this was tested). This is the whole point of all this -
that the full table definitions are loaded only if needed (as they were by the Web>List module). Again the point of caching is
clear. But the main thing to look at is, that the Web>Info module is loaded in 66/136 seconds (cache/non-cache) with dynamic
loading (was later tested to 60/118 ms when tt_content was not loaded by default) which is LOWER than if the whole
tables.php was included (72/174 ms).

At this point the performance gain is not significant but welcomed. However the mechanism of dynamic loading of tables
provides the basis for much greater number of tables in TYPO3. Testing 31 duplicates of the tt_content table added to the
default number of configured tables (total of 62 tables configured) gave this benchmark:

Module Dynamic loading
Cache No cache

Web>List (loads all) 580 ms 1090 ms

Web>Info (loads none) 67 ms 139 ms

This shows once again the work of the caching (1090-580 ms gained by PHPA) but clearly demonstrates the main objective
of dynamic loading; The Web>Info module is not at all affected by the fact that 31 big tables has been added.

The serialized size of the $TCA in this case was measured to approx 2MB. The total number of KB in table-definition PHP-
files was approx. 1.7 MB.

Extreme tests of this configuration has also been done.

A duplicate of tt_content was added x number of times and yielded these results:

Number of tt_content dupl. Serialized size of $TCA Max size of httpd proces (from
“top”)

Parsetime of the included
documents

100 5,9 MB 23 MB 380 ms

250 14,5 MB 52 MB 12000 ms

500 28,8 MB 100 MB x
The configuration of tt_content is approx. 52 kb PHP code. The testing was done just loading the content into $TCA - no
further processing. However serializing the $TCA array (when that was tested) gave a double up on the amount of memory
the httpd process allocated. This was to expect of course.

From this table we learn, that PHP does not crash testing this. However it makes not much sense to use 500 tables of this
size. 250 tables might be alright and 100 tables is a more realistic roof over the number of tables in TYPO3 of the size of
tt_content!

Conducting the same experiment with a table configuration of only 8 kb with 9 fields configured (a reduced configuration for
the tt_content duplicate - which represents a more typical table) yielded these results:

Number of tables Serialized size of $TCA Max size of httpd process (from
“top”)

Parsetime of the included
documents

Web>List listing

1 240 kB 12 MB 0 ms 174 ms (12 MB)

100 1,0 MB 12 MB 77 ms 550 ms (12 MB)

250 2,4 MB 12 MB 200 ms 1050 ms (12 MB)

TYPO3 Core APIs - 133

Number of tables Serialized size of $TCA Max size of httpd process (from
“top”)

Parsetime of the included
documents

Web>List listing

500 4,7 MB 22 MB 450 ms 1900 ms (20 MB)

1000 9,3 MB 33 MB 900 ms 5000 ms (34 MB)

2000 18,6 MB 51 MB 2000 ms 18000 ms (60 MB)

Visual style of TCEforms
The design of the autogenerated forms in TYPO3 (typically referred to as "TCEforms") can be controlled down to fine detail.
The fifth parameter in the $TCA/types configuration is used for this.

The value consists of three integer pointers seperated by a dash (“-”). The first parameter points to colorscheme, the second
points to stylescheme for the form elements and the third points to the borderscheme for the table surrounding all form
elements until the next border is defined.

The integer pointers refer to entries in the global $TBE_STYLES variable. Here the definitions for each pointer is configured.

$TBE_STYLES entries related to TCEforms
The array $TBE_STYLES is a part of the skinning API in TYPO3 and therefore the full description is found in the section
about skinning. However the definition of the three entries related to TCEforms will be explained in detail here below.

Default integer pointers
The "[0-x]" values in the "Subkeys" column in the table below represents the integer pointers that you use in the types-
configuration of $TCA. You can set up any positive integer key you like, but TYPO3s core parts already implements the keys
from 0-5 with a certain meaning which you are encouraged to follow as well:

Int. pointer Title Description
0 Default Default index. Always used on main-palettes in the bottom of the forms.

1 Meta fields Typically used for "Hidden", "Type" and other primary "meta" fields

2 Headers For fields related to header information

3 Main content For main content

4 Extras For extra content, like images, files etc.

5 Advanced For special content

Even if these pointers are used in the core of TYPO3 the default configuration as found in t3lib/stddb/tables.php includes only
a definition of the default "0" (zero) pointer:

$TBE_STYLES = array(
 'colorschemes' => Array (
 '0' => '#E4E0DB,#CBC7C3,#EDE9E5',
),
 'borderschemes' => Array (
 '0' => array('border:solid 1px black;',5)
)
);

TYPO3 Core APIs - 134

Reference table:
Key Subkeys Description

colorschemes [0-x] This value is a comma separated list of five color/class definitions. The meaning of
each color/class is defined as:

[general cell] , [header cell] , [palette header cell] , [header label] , [palette header
label]

Each composite color/class value is splitted with a "|" (vertical bar). The first part is a
color value, typically setting a background color or font color. The second part is a
class attribute value which will be set either for the table cell (td) or the span-tag
around text

For both color and class values these facts apply:
● Omitting a color (blank value) will use the default value (from index "0" and if

index "0" is not defined, based on the general mainColors in $TBE_STYLES)
● Setting a color value to dash (“-”) will make it transparent (or just not set).

Class attributes are set only if there was a class value set. There are no default class
values.

Example:
$TBE_STYLES['colorschemes'][0]='red,yellow,blue,olive,green';

Example:
$TBE_STYLES['colorschemes'][0]='-|class-red,-|class-yellow,-|
class-blue,-|class-olive,-|class-green';

This sets class attribute values instead. If you add this to the stylesheet you will get
the same result as entering the real color values:

TABLE.typo3-TCEforms .class-red { background-color: red; }
TABLE.typo3-TCEforms .class-yellow { background-color:
yellow; }
TABLE.typo3-TCEforms .class-blue { background-color: blue; }
TABLE.typo3-TCEforms .class-olive { color: olive; }
TABLE.typo3-TCEforms .class-green { color: green; }

styleschemes [0-x][elementKey] This value is the content of the "style" attribute of a form element (defined by
"elementKey").
If the value is prefixed "CLASS:" then it will set the class attribute instead to the value
after the prefix.

"elementKey" is the value of a ['columns']['fieldname']['config'] / TYPE (eg. "text",
"group", "check", "flex" etc.) or the string "all" (for defining a default value)

Example:
$TBE_STYLES['styleschemes'][0]['all'] = 'background-
color:#F7F7F3;';
$TBE_STYLES['styleschemes'][0]['check'] = '';

This (above) sets the background-color CSS attribute of all form elements except
checkboxes!

Example:

$TBE_STYLES['styleschemes'][0]['all'] = 'CLASS: formField';

This will set the class attribute to 'formField' for all elements. The associated
stylesheet could look like:

TABLE.typo3-TCEforms .formField { background-color: #F7F7F3; }

TYPO3 Core APIs - 135

Key Subkeys Description
borderschemes [0-x][key] This value defines the border style of the group of fields.

Technically the group of fields are wrapped into a table.

"key" is an index defining various values:
● "0" : "style" attribute of the table wrapping the section
● "1" : Distance in pixels after the wrapping table
● "2" : "background" attribute of table wrapping the section: Reference to

background image is relative to typo3/ folder (prefixed with ->backPath)
● "3" : "class" attribute of table wrapping the section.

Example:
$TBE_STYLES['borderschemes'][0][0] = 'border:solid 1px black;';
$TBE_STYLES['borderschemes'][0][1] = 5;
$TBE_STYLES['borderschemes'][0][2] =
'../typo3conf/freestyler_transp.gif';

This renders the form fields like this:

(Black border, the distance to the next section is 5 pixels and there is a background
image)

Example:

$TBE_STYLES['borderschemes'][0]= array
('','','','wrapperTable');

With an associated stylesheet you can get the same result (image not included):

TABLE.typo3-TCEforms .wrapperTable { border: 1px solid black;
margin-top: 5px; }

See next chapter for examples of how to configure your TCEforms.

Style pointers in the "types" configuration
The following is examples of how to use the styling features of TCEforms in real life. These examples will give you a chance
to figure out how the features described in the reference table above is implemented.

In the examples below the $TBE_STYLES configuration includes the following:
$TBE_STYLES['colorschemes'] = Array (
 '0' => '#F7F7F3,#E3E3DF,#EDEDE9',
 '1' => '#94A19A,#7C8D84,#7C8D84',
 '2' => '#E4D69E,#E7DBA8,#E9DEAF',
 '3' => '#C2BFC0,#C7C5C5,#C7C5C5',
 '4' => '#B2B5C3,#C4C6D1,#D5D7DE',
 '5' => '#C3B2B5,#D1C4C6,#DED5D7'
);
$TBE_STYLES['styleschemes'] = Array (
 '0' => array('all'=>'background-color: #F7F7F3;border:#7C8D84 solid 1px;', 'check'=>''),
 '1' => array('all'=>'background-color: #94A19A;border:#7C8D84 solid 1px;', 'check'=>''),
 '2' => array('all'=>'background-color: #E4D69E;border:#7C8D84 solid 1px;', 'check'=>''),
 '3' => array('all'=>'background-color: #C2BFC0;border:#7C8D84 solid 1px;', 'check'=>''),
 '4' => array('all'=>'background-color: #B2B5C3;border:#7C8D84 solid 1px;', 'check'=>''),
 '5' => array('all'=>'background-color: #C3B2B5;border:#7C8D84 solid 1px;', 'check'=>''),
);
$TBE_STYLES['borderschemes'] = Array (
 '0' => array('border:solid 1px black;',5),
 '1' => array('border:solid 1px black;',5),
 '2' => array('border:solid 1px black;',5),
 '3' => array('border:solid 1px black;',5),
 '4' => array('border:solid 1px black;',5),
 '5' => array('border:solid 1px black;',5)
);

Examples
First, lets look at a plain types-configuration which merely renders a list of fields:
'types' => Array (
 '0' => Array('showitem' => 'title;;1,photodate,description,images,fe_cruser_id')
),

TYPO3 Core APIs - 136

It renders this form:

Now I modify the types config to include the fifth parameters (in red):
'types' => Array (

'0' => Array('showitem' => 'title;;1;;1--0,photodate;;;;-4-,description;;;;2-0-,images;;;;1--
0,fe_cruser_id')
),

And this looks like:

To understand how the style pointers works, lets organize them into a table. This is the "types"-configuration string:
title;;1;;1--0,photodate;;;;-4-,description;;;;2-0-,images;;;;1--0,fe_cruser_id

TYPO3 Core APIs - 137

Splitting this information into a table looks like this:

Fieldname 5th param: 'colorscheme' pnt: 'stylescheme' pnt: 'borderscheme' pnt:
title 1--0 1 [blank] 0

photodate -4- [blank] 4 [blank]

description 2-0- 2 0 [blank]

images 1--0 1 [blank] 0

fe_cruser_id [blank] [blank] [blank] [blank]

Explanation:

● "colorscheme" : The pointer is set to "1" for the first field ("title" field). This gives a green style (according to definitions in
$TBE_STYLES['colorscheme'][1]) which is active until the "description" field is rendered. Here the pointer is changed to
"2" which gives the yellow style. Immediately after the pointer is set back to "1" and that is active throughout the form.

● "stylescheme" : The pointer starts by being blank. Since no previous value is set, the pointer is implicitly "0" (zero) then.
At the field "photodate" the pointer is set to "4" which means the style attribute gets the value "background-color:
#B2B5C3;border:#7C8D84 solid 1px;" (according to the current configuration of $TBE_STYLES['stylescheme'][4]). This
gives the blueish background of the date field. Immidiately after the pointer is back at "0" again and that lasts for the rest
of the fields.

● "borderscheme" : The pointer is set to "0", then blank for three fields and then set to "0" again for the last two fields. In
effect we get the form divided into two sections. As you can see setting the borderscheme pointer explicitly - even if set to
the same value! - breaks up the form each time into a new section. Setting the first pointer to the default border scheme
was actually not necessary but served to illustrate that the same border was applied twice.

It should also be clear now, that setting an empty pointer (blank string) will just let the former value pass through.

The three schemes are designed to go in pairs. It is most likely that all three pointers should be set each time you apply the
fifth parameter value. Example:
'types' => Array (

'0' => Array('showitem' => 'title;;1;;1-1-1,photodate;;;;2-2-2,description;;;;3-3-
3,images,fe_cruser_id;;;;5-5-5')
),

TYPO3 Core APIs - 138

TYPO3 Core APIs - 139

RTE API

Rich Text Editors in TYPO3 backend
Introduction
When you configure a table in $TCA and add a field of the type “text” which is edited by a <textarea> you can choose to use
a Rich Text Editor (RTE) instead of the <textarea> field. A RTE enables the users to use visual formatting aids to create bold,
italic, paragraphs, tables etc. In other words; it gives normal text processing features in the webbrowser.

It is not the scope of this section in the document to describe how you set up a text field to use an RTE. However I will give
you a short hint: The quickest way is to add the key “defaultExtras” to the configuration of the column and add the string
“richtext[*]” as value. This could look like this:
 1: 'imagecaption' => Array (
 2: 'label' => 'LLL:EXT:lang/locallang_general.php:LGL.caption',
 3: 'config' => Array (
 4: 'type' => 'text',
 5: 'cols' => '30',
 6: 'rows' => '3'
 7:),
 8: 'defaultExtras' => 'richtext[*]'
 9:),

The magic is in line 8. This works for FlexForms too.

RTEs in Extensions
TYPO3 supports any Rich Text Editor for which someone might write a connector to the RTE API. This means that you can
freely choose whatever RTE you want to use among those available from the Extension Repository on typo3.org.

Here you see three possible Rich Text Editors listed in the Extension Manager. One of them is enabled while the other two
are not.

You can enable more than one RTE if you like but only one will be active at a time. Since Rich Text Editors often depend on
browser versions, operating systems etc. each RTE must have a method in the API class which reports back to the system if

TYPO3 Core APIs - 140

the RTE is available in the current environment. The Rich Text Editor available to the backend user will be the first loaded
RTE which reports back to TYPO3 that it is available in the environment. If the RTE is not available, the next RTE Extension
loaded will be asked.

For example the RTE “rtehtmlarea” is available under Windows and Linux and under both MSIE and Mozilla. Opposite the
“rte” extension is only available under MSIE / Windows. If the “rtehtmlarea” extension is loaded before the “rte” extension then
the “rtehtmlarea” RTE is always used. But if “rte” is loaded first then it is also asked for availability first; the result is that under
Windows / MSIE the “rte” (the “traditional” RTE in TYPO3) is used while “rtehtmlarea” will be used in other environments.

API for Rich Text Editors
Connecting an RTE in an extension to TYPO3 is easy.

● Create a class file in your extensions, named “class.tx_[extensionkey minus underscores]_base.php”. Make the class
inside an extension of the system class, “t3lib_rteapi” (which you should include first of course) and override functions
from the parent class to the degree needed.

● In the “ext_localconf.php” file you put an entry in $TYPO3_CONF_VARS['BE']['RTE_reg'] which registers the new RTE
with the system. For example;
$TYPO3_CONF_VARS['BE']['RTE_reg']['myrte'] = array('objRef' =>
'EXT:myrte/class.tx_myrte_base.php:&tx_myrte_base');

The object reference in “objRef” consists of a filename reference (for the class file) and then the name of the class prefixed
with “&” which ensures that you get the same instance (global) of the object each time you ask for it. "myrte" is the extension
key of your RTE extension (with underscores stripped).

class.t3lib_rteapi.php
In the base class for the RTE API there are three main methods of interest:

● function isAvailable()
This method is asked for the availability of the RTE; This is where you should check for environmental requirements that
is needed for your RTE. Basically the method must return TRUE if the RTE is available. If it is not, the RTE can put text
entries in the internal array ->errorLog which is used to report back the reason why it was not available.

● function drawRTE
(&$pObj,$table,$field,$row,$PA,$specConf,$thisConfig,$RTEtypeVal,$RTErelPath,$thePidValue)
This method draws the content for the editing form of the RTE. It is called from the “t3lib_TCEforms” class which also
passes a reference to itself in $pObj. For details on the arguments in the method call, please see inside
“class.t3lib_rteapi.php”.

● function transformContent($dirRTE,$value,$table,$field,$row,$specConf,$thisConfig,$RTErelPath,$pid)
This method is used both from ->drawRTE() and from t3lib_tcemain to transform the content between the database and
RTE. When content is loaded from the database to the RTE (and vice versa) it may need some degree of transformation.
For instance references to links and images in the database might have to be relative while the RTE requires absolute
references. This is just a simple example of what “transformations” can do for you and why you need them. There are
plenty of details on this topic later.

Example: The “rte” extension
The “rte” extension has a “ext_localconf.php” file which looks like this:

if (!defined ('TYPO3_MODE')) die ('Access denied.');
$TYPO3_CONF_VARS['BE']['RTE_reg']['rte'] = array('objRef' =>
'EXT:rte/class.tx_rte_base.php:&tx_rte_base');

As you can see it registers the API class to the system. In the class “tx_rte_base” the three methods from the list above is
available.

The file “class.tx_rte_base.php” looks like this:
 4: require_once(PATH_t3lib.'class.t3lib_rteapi.php');
 5: /**
 6: * RTE base class (Traditional RTE for MSIE 5+ on windows only!)
 7: *
 8: * @author Kasper Skaarhoj <kasper@typo3.com>
 9: * @package TYPO3
 10: * @subpackage tx_rte
 11: */
 12: class tx_rte_base extends t3lib_rteapi {
 13:
 14: // External:
 15: var $RTEdivStyle; // Alternative style for RTE <div> tag.
 16:
 17: // Internal, static:
 18: var $ID = 'rte'; // Identifies the RTE ...

TYPO3 Core APIs - 141

 19: var $debugMode = FALSE; // Debug mode
 20:
 21:
 22: /**
 23: * Returns true if the RTE is available. Here you check if the browser requirements are met.
 24: * If there are reasons why the RTE cannot be displayed you simply enter them as text in
->errorLog
 25: *
 26: * @return boolean TRUE if this RTE object offers an RTE
 27: */
 28: function isAvailable() {
 29: global $CLIENT;
 30:
 31: if (TYPO3_DLOG) t3lib_div::devLog('Checking for availability...','rte');
 32:
 33: $this->errorLog = array();
 34: if (!$this->debugMode) { // If debug-mode, let any browser through
 35: if ($CLIENT['BROWSER']!='msie') $this->errorLog[] = '"rte": Browser is not MSIE';
 36: if ($CLIENT['SYSTEM']!='win') $this->errorLog[] = '"rte": Client system is not
Windows';
 37: if ($CLIENT['VERSION']<5) $this->errorLog[] = '"rte": Browser version
below 5';
 38: }
 39: if (!count($this->errorLog)) return TRUE;
 40: }
 41:
 42: /**
 43: * Draws the RTE as an iframe for MSIE 5+
 44: *
...
 55: * @return string HTML code for RTE!
 56: */
 57: function drawRTE
(&$pObj,$table,$field,$row,$PA,$specConf,$thisConfig,$RTEtypeVal,$RTErelPath,$thePidValue) {
 58:
 59: // Draw form element:
 60: if ($this->debugMode) { // Draws regular text area (debug mode)
 61: $item = parent::drawRTE
($pObj,$table,$field,$row,$PA,$specConf,$thisConfig,$RTEtypeVal,$RTErelPath,$thePidValue);
 62: } else { // Draw real RTE (MSIE 5+ only)
 63:
 64: // Adding needed code in top:
 65: $pObj->additionalJS_pre['rte_loader_function'] = $this->loaderFunc($pObj->formName);
 66: $pObj->additionalJS_submit[] = "
 67: if(TBE_RTE_WINDOWS['".$PA['itemFormElName']."']) {
document.".$pObj->formName."['".$PA['itemFormElName']."'].value = TBE_RTE_WINDOWS['".$PA
['itemFormElName']."'].getHTML(); } else { OK=0; }";
 68:
...
 82:
 83: // Transform value:
 84: $value = $this->transformContent('rte',$PA['itemFormElValue'],
$table,$field,$row,$specConf,$thisConfig,$RTErelPath,$thePidValue);
 85:
 86: // Register RTE windows:
 87: $pObj->RTEwindows[] = $PA['itemFormElName'];
 88: $item = '
 89: '.$this->triggerField($PA['itemFormElName']).'
 90: <input type="hidden" name="'.htmlspecialchars($PA['itemFormElName']).'"
value="'.htmlspecialchars($value).'" />
 91: <div id="cdiv'.count($pObj->RTEwindows).'" style="'.htmlspecialchars
($RTEdivStyle).'">
 92: <iframe
 93: src="'.htmlspecialchars($rteURL).'"
 94: id="'.$PA['itemFormElName'].'_RTE"
 95: style="visibility:visible; position:absolute; left:0px; top:0px; height:100%;
width:100%;"></iframe>
 96: </div>';
 97: }
 98:
 99: // Return form item:
 100: return $item;
 101: }

Here follows some comments:

● Line 28-40 detects the browser. Only if the browser is MSIE on Windows and a version higher than or equal to 5, then will
the RTE be available for the user. Notice how error messages are set in ->errorLog so the system can give the user a hint
as to why the RTE didn't show up.

● Line 57 starts the method “drawRTE” which creates the RTE as HTML. This RTE is in fact created by another script inside
an <iframe>. The content of the field is stored in a hidden field and the script in the IFRAME loads the content by
JavaScript from this field.
Basically, the content submitted from the RTE is in this hidden field! In other words, the RTE has to load and save back

TYPO3 Core APIs - 142

content to this field. Other RTEs might integrate this differently. For instance a Java RTE would also communicate the
content to and from a hidden field while the “rtehtmlarea” extension uses a normal <textarea> field but somehow overlays
it with visual formatting.
In all cases, the call to triggerField() is important (line 89); This returns a hidden field with the same field name as the
main field but prefixed “_TRANSFORM_” and having the value “RTE”. This hidden field triggers the transformation
process from RTE content to database (DB) in TCEmain and therefore you have to add it!

● Notice how line 84 calls the “transformContent” method in the class to create the $value to put into the RTE. In the case of
the “rte” extension the “transformContent” method is used from the parent class, but if you need special transformations
you can easily do so by overriding the function in you child class.

More Examples
More examples of Rich Text Editors exist. This is a list of some extensions offering RTEs:

● “rte” - this is the traditional TYPO3 RTE, working only in Windows, MSIE 5+

● “rtehtmlarea” - based on HTMLArea 3.0 which is another Open Source project this RTE offers support for both MSIE and
Mozilla - and thereby for other operating systems than Windows.

● “rteekit” - a proof-of-concept extension implementing the Ekit Java Editor which is also Open Source.

TYPO3 Core APIs - 143

Notice
There might be other very good extensions with RTEs available so the list above should not be understood as the
recommended RTEs! The extension “rte” has a special status since that is the traditional RTE working for years on MSIE /
Windows. The other two were in fact created during the creation of the RTE API in TYPO3 in order to test it.

Transformations
Introduction
Transformation of content between the database and an RTE is needed if the format of the content in the database is
different than the format understood by an RTE. A simple example could be that bold-tags in the database should be
converted to tags in the RTE or that references to images in tags in the database should be relative while
absolute in the RTE. In such cases a transformation is needed to do the conversion both ways; From database (DB) to RTE
and from RTE to DB.

Generally transformations are needed for two reasons:

● Data Formats; If the agreed format of the stored content in TYPO3 is different from the HTML format the RTE produces.
This could be issues like XHTML, banning of certain tags or maybe a hybrid format in the database. (See section 3 in the
illustration some pages ahead)

● RTE specifics; If the RTE has special requirements to the content before it can be edited and if that format is different
from what we want to store in the database. For instance an RTE could require a full HTML document with <html>,
<head> and <body> - obviously we don't want that in the database and likewise we will have to wrap content in such a
dummy-body before it can be edited. (This is the case with “rteekit”, see section 4 in the illustration some pages ahead).

Hybrid modes
The traditional challenge of incorporating an RTE in TYPO3 has been that the RTE was available only to a limited set of
browsers, typically MSIE on Windows. Therefore if an RTE was supported it had to be backwards compatible with situations
where content was to be edited from regular <textarea>'s with no visual formatting.

Among the transformations in TYPO3 there are two modes, “ts_transform” and “css_transform”, which are trying to maintain a
data format that is as human readable as possible while still offering an RTE for editing if applicable.

To know the details of those transformations, please refer to the tables in the next section. More historical background can
also be obtained later in this document. But here is a short example of a hybrid mode:

In Database:

This is how the content in the database could look for a hybrid mode (such as “css_transform”). As you can see the TYPO3-
specific tag, “<link>” is used for the link to page 123. This tag is designed to be easy for editors to insert. It is of course
converted to a real <a> tag when the page is rendered in the frontend. Further line 2 shows bold text. In line 3 the situation is
that the paragraph should be centered - and there seems to be no other way than wrapping the line in a <p> tag with the
“align” attribute. Not so human readable but we can do no better without an RTE. Line 4 is just plain.

Generally this content will be processed before output on a page of course. Typically the rule will be this: “Wrap each line in a
<p> tag which is not already wrapped in a <p> tag and convert all TYPO3-specific <link>-tags to real <a> tags.” and thus the
final result will be valid HTML.
This is line number 1 with a <link 123>link</link> inside

TYPO3 Core APIs - 144

This is line number 2 with a bold part in the text
<p align=”center”>This line is centered.</p>
This line is just plain

In RTE:

The content in the database can easily be edited as plain text thanks to the “hybrid-mode” used to store the content. But
when the content above from the database has to go into the RTE it will not work if every line is not wrapped in a <p> tag!
The same is true for the <link> tag; it has to be converted so the RTE understands it:
<p>This is line number 1 with a link inside</p>
<p>This is line number 2 with a bold part in the text</p>
<p align=”center”>This line is centered.</p>
<p>This line is just plain</p>

This process of conversion from the one format to the other is what transformations do!

Configuration
Transformations are mainly defined in the “Special Configuration” of the $TCA "types"-configuration. There is detailed
description of this in the $TCA section of this document.

In addition transformations can be fine-tuned by Page TSconfig which means that RTE behaviour can be determined even on
page branch level! Details about this are found later in this chapter about the RTE API.

Where transformations are performed
The transformations you can do with TYPO3 is done in the class “t3lib_parsehtml_proc”. There are typically a function for
each direction; From DB to RTE (suffixed “_rte”) and from RTE to DB (suffixed “_db”).

The transformations are invoked in two cases:

● Before content enters the editing form
This is done by the RTE API itself, calling the method t3lib_rteapi::transformContent(). See examples of this in the
extensions “rte”, “rtehtmlarea” and “rteekit”. In particular “rteekit” is interesting because it not only calls the system
transformations but also does some Ekit-specific processing since a whole HTML document has to be used in “Ekit” Java
RTE which means that the HTML document body must be wrapped/stripped off as a part of the transformation process.

● Before content is saved in the database
This is done in t3lib_tcemain class and the transformation is triggered by a pseudo-field from the submitted form! This
field is added by the RTE API (calling t3lib_rteapi::triggerField()). Lets say the fieldname is “data[tt_content][456]
[bodytext]” then the trigger field is named “data[tt_content][456][_TRANSFORM_bodytext]” and in t3lib_tcemain this
pseudo-field will be detected and used to trigger the transformation process from RTE to DB. Of course the pseudo field
will never go into the database (since it is not found in $TCA).

The concept of transformations is discussed in more detail a few pages ahead ("Historical perspective on RTE
transformations").

Process illustration
The following illustration shows the process of transformations graphically.

Part 1: The RTE Applications
This is the various possible RTE applications. They can be based on DHTML, Active-X, Java, Flash or whatever.

Part 2: The RTE Specific Transformation
Some RTEs might need to apply additional transformation of the content in addition to the general transformation. An
example is "rteekit" which requires a full HTML document for editing (and which will return a full document). In that case the
RTE specific transformation must add/remove this html-document wrapper.

RTE specific transformations is normally programmed directly into the rte-api extension class. In the case of "rteekit" that is
"tx_rteekit_base" which extends "t3lib_rteapi"

Part 3: The Main Transformation
The main transformation of content between browser format for RTEs and the database storage format. This is general for all
RTEs. Normally consists of converting links and image references from absolute to relative and further HTML processing as
needed. This is the kind of transformation specifically described on the coming pages!

The main transformations is done with "t3lib_parsehtml_proc".

Part 4: The Database
The database where the content is stored for use in both backend and frontend.

TYPO3 Core APIs - 145

Part 5: Rendering the website
Content from the database is processed for display on the website. Depending on the storage format this might also involve
"transformation" of content. For instance the internal "<link>" tag has to be converted into an HTML <a> tag.

The processing normally takes place with TypoScript Templates, the "CSS Styled Content" extension (TS object path
"lib.parseFunc_RTE")

Part 6: The Website
The website made with TYPO3.

Content Examples
This table gives some examples of how content will look in the RTE, in the database and on the final website.

Notice: This is only examples! It might not happen exactly like that in real life since it depends on which exact
transformations you apply. But it illustrates the point that the content needs to be in different states whether in the RTE,
Database or Website frontend.

RTE (#1) Database (#4) Website (#6) Comment
<p>Hello World</p> Hello World <p>Hello World</p> <p> omitted in

DB to make it
plain-text
editable.

<p align="right">Right aligned text</p> <p align="right">Right aligned
text</p>

<p align="right">Right aligned
text</p>

Had to keep <p>
tag in DB
because align
attribute was
found.

<table ...>....</table> [stripped out] - Tables were not
allowed, so
stripped.

<link 123> Links are stored
with the <link>-
tag and needs
processing for
both frontend and
backend.

 References to
images must
usually be
absolute paths in
RTEs while
relative in
database.

Transformation overview
The transformation of the content can be configured by listing which transformation filters to pass it through. The order of the
list is the order in which the transformations are performed when saved to the database. The order is reversed when the

TYPO3 Core APIs - 146

content is loaded into the RTE again.

Transformation filter: Description:
ts_transform Transforms the content with regard to most of the issues related to content elements types 'Text' and

'Text w/Image'. The mode is optimized for the content rendering of the static template “content
(default)” which uses old tag style rendering.
The mode is a “hybrid” mode which tries to save only the necessary HTML in the database so that
content might still be easily edited without the RTE. For instance a text paragraph will be
encapsulated in <p> tags while in the database it will just be a single line ended by a line break
character.
(Supports the “cms” extension)

css_transform Like “ts_transform”, but headers and bulletlists are preserved as <Hx> tags and /
(TYPOLIST and TYPOHEAD are still converted to Hx and OL/UL, but not reversely...) and tables are
preserved (PROC.preserveTables is disabled).
The mode is optimized for the content rendering done by “css_styled_content” or similar.

ts_preserve Converts the list of preserved tags - if any - to -tags with a custom parameter 'specialtag'
which holds the value of the original tag.
Depricated.

ts_images Checks if any images on the page is from external URLs and if so they are fetched and stored in the
uploads/ folder. In addition 'magic' images are evaluated to see if their size has changed and if so the
image is recalculated on the server. Finally absolute URLs are converted to relative URLs for all local
images.

ts_links Converts the absolute URLs of links to the TypoScript specific <LINK>-tag. This process is designed
to make links in concordance with the typolink function in the TypoScript frontend.

ts_reglinks Converts the absolute URLs of links to relative. Keeping the <A>-tag.

Meta transformation: Description:
ts Meta-mode which is basically a substitute for this list: ts_transform,ts_preserve,ts_images,ts_links.

This is the one used specifically for the two 'Text'-types of the content elements (“cms” extension).

ts_css Like “ts”, a meta-mode which is a substitute for the list: css_transform,ts_images,ts_links. It is
designed to be the new, modern transformation used by most RTE cases, because it converts links
between <A> and <LINK> but preserves all other content while still making it as human readable as
possible (that means simple <P>-tags are resolved into simple lines.)

In addition, custom transformations can be created. This allows you to create your own tailor made transformations with a
PHP class where you can program how content is processed to and from the database. See section later.

Transformation details
The transformations offered by the TYPO3 core are performed by the class “t3lib_parsehtml_proc”. Here follows a technical
and detailed description of the transformation filters available:

DB -> RTE RTE -> DB

ts_transform, css_transform
function t3lib_parseHTML::TS_transform_rte() function t3lib_parseHTML::TS_transform_db()

TYPO3 Core APIs - 147

DB -> RTE RTE -> DB
● Sections by the tags TABLE,PRE,UL,OL,H1,H2,H3,H4,H5,H6

are not processed and thus just passed on to the RTE.
● The content of <BLOCKQUOTE> sections are sent recursively

through the ts_transform filter. The tag remains.
● <TYPOLIST> sections are converted to or sections,

the latter is the case if the type parameter is set to 1.
The conversion of TYPOLIST-tags can be disabled by setting
the 'proc.typolist' option. See later.

● <TYPOHEAD> sections are converted to <Hx>-tags. The type
parameter ranging from 1-5 determines which H-tag will be used.
If no type parameter is set, H6 is used.
The conversion of TYPOHEAD-tags can be disabled by setting
the 'proc.typohead' option. See later.

● All content outside the tags already mentioned are now
processed as follows:
● Every line is wrapped in <P>-tags (configurable to DIV), if a

line is empty a is set and if the line happens to be
wrapped in DIV/P-tags already, it's not wrapped again (this
might be the case if align or class parameters has been set).

● Then tags are mapped to tags and <I>
tags are mapped to tags (This is how the RTE prefers
it).

● All content between the P/DIV tags outside of other allowed
HTML-tags are htmlspecialchar()'ed. Thus only allowed
HTML code is preserved and other “pseudo tags” are
mapped to real text.

● Sections by the tag PRE are not processed and thus just passed
on to the DB.

● <TABLE>-sections are dissolved so only the text of the table
cells remains. Every cell represents a new line. The reason for
this action basically is that tables are not wanted in the
'Text'-types and they may also be nice to get rid of in case you
have transferred content from other websites. (This can be
disabled.)
(Does NOT apply to “css_transform”)

● The content of <BLOCKQUOTE> sections are sent recursively
through the ts_transform filter. The tag remains.

● and sections are converted to <TYPOLIST>
sections. If the bulletlist is (ordered list with numbers) the
type parameter of the typolist is set to 1. Bulletlists in multiple
levels are not supported.
The conversion of TYPOLIST-tags can be disabled by setting
the 'proc.typolist' option. See later.
(Does NOT apply to “css_transform”)

● <Hx> sections are converted to <TYPOHEAD>-tags. The
number of the Hx-tag ranging from 1-5 is set as the type-number
of the TYPOHEAD tag. <H6> is equal to type=0 (default). Also
the align parameter is preserved as well as the class parameter
if set.
The conversion of TYPOHEAD-tags can be disabled by setting
the 'proc.typohead' option. In that case the tag is preserved with
the parameters align and class. See later.
(Does NOT apply to “css_transform”)

● All content outside these block are now processed as follows:
● All <DIV> and <P> sections are dissolved into lines (unless

align and/or class parameters are set).
●
 tags are as well converted into newlines (configurable

since this will resolve “soft linebreaks” into paragraphs!).
● Then and tags are remapped to and

<I> tags. (This is more human readable. Configurable).
● The list of allowed tags (configurable) is preserved - all other

tags discarded (thus junk-tags from pasted content will not
survive into the database!).

● The content outside the allowed tags is de-htmlspecialchar
()'ed - thus converted back to human-readable text.
Furthermore the nesting of tags inside of P/DIV sections is
preserved. For instance this: <P>One <U>two
three</P></U> will be converted to <P>One two
three</P>. That is the U-tags being removed, because they
were falsely nested with the <P> tags.

ts_preserve (depricated)
function t3lib_parseHTML::TS_preserve_rte() function t3lib_parseHTML::TS_preserve_db()

● If 'proc.preserveTags' are configured those tags are converted to
-
sections. Those are supposed to be let alone by the RTE.

● If 'proc.preserveTags' are configured -tags with the
custom 'specialtag' parameter set are converted back to the tag
value contained in the specialtag-parameter.

ts_images
function t3lib_parseHTML::TS_images_rte() function t3lib_parseHTML::TS_images_db()

● All -tags are processed and if the value of the src-
parameter happens not to start with 'http' it's expected to be a
relative URL and the current site URL is prefixed so the
reference is absolute in the RTE as the RTE requires.

● All -tags are processed and if the first part of the src-
parameter is not the same as the current site URL, the image
must be a reference to an external image. In that case the image
is read from that URL and stored as a 'magic' image in the
upload/ folder (can be disabled).

● All magic images (that is images stored in the uploads/ folder
(configured by TYPO3_CONF_VARS["BE"]
["RTE_imageStorageDir"], filenames prefixed with 'RTEmagicC_'
(child=actual image) and 'RTEmagicP_' (parent=original image)))
are processed to see if the physical dimensions of the image on
the server matches the dimensions set in the img-tag. If this is
not the case, the user must have changed the dimensions and
the image must be re-scaled accordingly.

● Finally the absolute reference to the image is converted to a
proper relative reference if the image URL is local.

ts_links
function t3lib_parseHTML::TS_links_rte() function t3lib_parseHTML::TS_links_db()

TYPO3 Core APIs - 148

DB -> RTE RTE -> DB
● All <LINK>-tags (TypoScript specific) are converted to proper

<A>-tags. The parameters of the <LINK>-tags are separated by
space. The first parameter is the link reference (see typolink
function in TSref for details on the syntax), second is the target if
given (if '-' the target is not set) and the third parameter is the
class.

● All <A>-tags are converted to <LINK> tags, however only if they
do not contain any parameters other than href, target and class.
These are the only three parameters which can be represented
by the TypoScript specific <LINK>-tag.

ts_reglinks
function t3lib_parseHTML::TS_reglinks() function t3lib_parseHTML::TS_reglinks()

● All A-tags have URLs converted to absolute URLs if they are
relative

● All A-tags have their absolute URLs converted to relative if
possible (that is the URL is within the current domain).

Page TSconfig
The RTEs can be configured by Page TSconfig. There is a top level object name, "RTE", that is used for this. The main
object paths looks like this:

Property: Data type: Description:
default.[...]
config.[tablename].[field].[...]
config.[tablename].[field].types.[type].
[...]

->RTEconf These objects contain the actual configuration of the RTE interface. For the
properties available, refer to the table below. This is a description of how you
can customize in general and override for specific fields/types.

'RTE.default' configures the RTE for all tables/fields/types

'RTE.config.[tablename].[field]' configures a specific field. The values inherit
the values from 'RTE.default' in fact this is overriding values.

'RTE.config.[tablename].[field].types.[type]' configures a specific field in case
the 'type'-value of the field matches type. Again this overrides the former
settings.

[individual RTE options] - There are other options to set for the RTE toplevel object. These depends on
the individual RTEs though! So there can be no further reference in this table
to these properties.
Generally the "rte" (classic MSIE RTE) will set the standard for configuration
options, so you can refer to the documentation for that RTE for more details.
On the top level of the RTE object you will normally find that general
collections of classes, styles etc. are configured.

[page:RTE]

Configuration examples
This configuration in "Page TSconfig" will disable the RTE altogether:
RTE.default.disabled = 1
In the case below the RTE is still disabled generally, but this is overridden specifically for the table "tt_content" where the
RTE is used in the field "bodytext"; The "disabled" flag is set to false again which means that for Content Elements the RTE
will be available.
RTE.default.disabled = 1
RTE.config.tt_content.bodytext.disabled = 0

In this example the RTE is still enabled for content elements in generally but if the Content Element type is set to "Text" (text)
then the RTE will be disabled again!
RTE.default.disabled = 1
RTE.config.tt_content.bodytext.disabled = 0
RTE.config.tt_content.bodytext.types.text.disabled = 1

The RTE object in Page TSconfig
The RTE object contains configuration of the RTE application. There are a few properties which are used externally from the
RTE. The property "disabled" will simply disable the rendering of the RTE and "proc" is reserved to contain additional
configuration of transformations.

Property: Data type: Description:
disabled boolean If set, the editor is disabled.

This option is evaluated in t3lib_TCEforms where it determines if the RTE is rendered
or not.

TYPO3 Core APIs - 149

Property: Data type: Description:
proc ->PROC Customization of the server processing of the content - also called 'transformations'.

See table below.
The transformations are only initialized, if they are configured (“rte_transform” must be
set for the field in the types-definition in TCA.)
The "->PROC" object is processed in "t3lib_parsehtml_proc" and is independant of the
particular RTE used (like transformations generally is!)

[individual RTE options] - Each RTE may use additional properties for the RTE. Typically such properties relates
to the features of the RTE application. For instance you could configure which tool bar
buttons are available etc.

[page:->RTEconf]

Configuration examples
 0: RTE.default >
 1: RTE.default {
 2: mainStyle_font = Arial, sans-serif
 3: mainStyle_size = 12
 4: mainStyle_color = black
 5: classesParagraph = redText
 6: classesCharacter = redText
 7: showButtons = cut,copy,fontstyle,fontsize, textcolor,table,bgcolor
 8: proc.preserveTables = 1
 9:
 10: proc.entryHTMLparser_db = 1
 11: proc.entryHTMLparser_db {
 12: keepNonMatchedTags = 1
 13: xhtml_cleaning = 1
 14: }
 15:
 16: mainStyleOverride_add {
 17: P = font-family:Arial, sans-serif; font-size:12;
 18: H1 = font-family:Arial, sans-serif; font-size:16; font-weight:bold; margin-top:0;margin-
bottom:10;
 19: H2 = font-family:Arial, sans-serif; font-size:12; font-weight:bold; color:navy; margin-
top:0;margin-bottom:10;
 20: H3 = font-family:Arial, sans-serif; font-size:18; font-weight:bold;
 21: H4 = font-family:Arial, sans-serif; font-size:24;
 22: H5 = font-family:Arial, sans-serif; font-size:20; color:navy; font-weight:normal; margin-
top:0;margin-bottom:10;
 23: H6 = font-family:Arial, sans-serif; font-size:16; font-weight:bold;
 24: }
 25: disablePCexamples = 0
 26: }

In this example all the configuration except line 8-14 ("proc." configuration) is defining the RTE applications internal features.
These options will vary depending on the RTE used. In this case the configuration is for the classic MSIE Active-X RTE in the
extension "rte".

The ->PROC object
This object contains configuration of the transformations used. These options are universal for all RTEs and used inside the
class "t3lib_parsehtml_proc".

The main objective of these options is to allow for minor configuration of the transformations. For instance you may disable
the mapping between - and <I>- tags which is done by the 'ts_transform' transformation. Or you could
disable the default transfer of images from external URL to the local server. This is all possible through the options.

Notice how many properties relates to specific transformations only! Also notice that the meta-transformations "ts" and
"ts_css" implies other transformations like "ts_transform" and "css_transform" which means that options limited to
"ts_transform" will also work for "ts" of course.

Property: Data type: Description:
overruleMode List of RTE

transformations
This can overrule the RTE transformation set from TCA.

Notice, this is a comma list of transformation keys. (Not a "dash-list" like in $TCA).

typolist boolean (Applies for “ts_transform” only)

This enables/disables the conversion between <TYPOLIST> and sections.
Default (if unset) is that "typolist" is enabled.

Example that disables "typolist":
typolist = 0

TYPO3 Core APIs - 150

Property: Data type: Description:
typohead boolean (Applies for “ts_transform” only)

This enables/disables the conversion between <TYPOHEAD> and <Hx> sections.

Example that disables "typohead":
typohead = 0

preserveTags list of tags (DEPRECATED)

Here you may specify a list of tags - possibly user-defined pseudo tags - which you
wish to preserve from being removed by the RTE. See the information about
preservation in the description of transformations.

Example:
In the default TypoScript configuration of content rendering the tags typotags <LINK>,
<TYPOLIST> and <TYPOHEAD> are the most widely used. However the
<TYPOCODE>-tag is also configured to let you define a section being formatted in
monospace. Lets also imaging, you have defined a custom tag, <MYTAG>. In order to
preserve these tag from removal by the RTE, you should configure like this.

RTE.default.proc {
 preserveTags = TYPOCODE, MYTAG
}

Relates to the transformation 'ts_preserve'

dontConvBRtoParagraph boolean (Applies for “ts_transform” and "css_transform" only (function divideIntoLines))

By default
 tags in the content are converted to paragraphs. Setting this value will
prevent the convertion of
-tags to new-lines (chr(10))

internalizeFontTags boolean (Applies for “ts_transform” and "css_transform" only (function divideIntoLines))

This splits the content into font-tag chunks.
If there are any <P>/<DIV> sections inside of them, the font-tag is wrapped AROUND
the content INSIDE of the P/DIV sections and the outer font-tag is removed.
This functions seems to be a good choice for pre-processing content if it has been
pasted into the RTE from eg. star-office.
In that case the font-tags is normally on the OUTSIDE of the sections.

allowTagsOutside commalist of strings (Applies for “ts_transform” and "css_transform" only (function divideIntoLines))

Enter tags which are allowed outside of <P> and <DIV> sections when converted back
to database.
Default is “img”
Example:
IMG,HR

allowTagsInTypolists commalist of strings (Applies for “ts_transform” only)

Enter tags which are allowed inside of <typolist> tags when content is sent to the
database.
Default is “br,font,b,i,u,a,img,span”

allowTags commalist of strings (Applies for “ts_transform” and "css_transform" only (function getKeepTags))

Tags to allow. Notice, this list is added to the default list, which you see here:
b,i,u,a,img,br,div,center,pre,font,hr,sub,sup,p,strong,em,li,ul,ol,blockquote,strike,span
If you wish to deny some tags, see below.

denyTags commalist of strings (Applies for “ts_transform” and "css_transform" only (function getKeepTags))

Tags from above list to disallow.

HTMLparser_rte
HTMLparser_db

->HTMLparser (Applies for “ts_transform” and "css_transform" only (function getKeepTags))

This is additional options to the HTML-parser calls which strips of tags when the
content is prepared for the RTE and DB respectively. You can configure additional
rules, like which other tags to preserve, which attributes to preserve, which values are
allowed as attributes of a certain tag etc.
.nestingGlobal for HTMLparser_db is set by default to
“b,i,u,a,center,font,sub,sup,strong,em,strike,span” unless another value is set.
Also B/I tags are mapped to STRONG/EM tags in the RTE direction and vise versa.
This parsing is done on a per-line basis, so you cannot expect the paragraph tags (P
or DIV) to be included.

Notice the ->HTMLparser options, “keepNonMatchedTags” and “htmlSpecialChars” is
NOT observed. They are preset internally

TYPO3 Core APIs - 151

Property: Data type: Description:
dontRemoveUnknownTags_
db

boolean (Applies for “ts_transform” and "css_transform" only (function HTMLcleaner_db))

Direction: To database
Default is to remove all unknown tags in the content going to the database. (See
HTMLparser_db above for default tags). Generally this is a very usefull thing, because
all kinds of bogus tags from pasted content like that from Word etc. will be removed to
have clean content in the database.
However this disables that and allows all tags, that are not in the HTMLparser_db-list.

dontUndoHSC_db boolean (Applies for “ts_transform” and "css_transform" only (function HTMLcleaner_db))

Direction: To database
Default is to re-convert literals to characters (that is < to <) outside of HTML-tags.
This is disabled by this boolean. (HSC means HtmlSpecialChars - which is a PHP
function)

dontProtectUnknownTags_rt
e

boolean (Applies for “ts_transform” and "css_transform" only (function setDivTags))

Direction: To RTE
Default is that tags unknown to HTMLparser_rte is “protected” when sent to the RTE.
This means they are converted from eg <MYTAG> to <MYTAG>. This is normally
very fine, because it can be edited plainly by the editor and when returned to the
database the tag is (by default, disabled by .dontUndoHSC_db) converted back.
Setting this option will prevent unknown tags from becoming protected.

dontHSC_rte boolean (Applies for “ts_transform” and "css_transform" only (function setDivTags))

Direction: To RTE
Default is that all content outside of HTML-tags is passed through htmlspecialchars().
This will disable that. (opposite to .dontUndoHSC_db)
This option disables the default htmlspecialchars() conversion.

dontConvAmpInNBSP_rte boolean (Applies for “ts_transform” and "css_transform" only (function setDivTags))

Direction: To RTE
By default all codes are NOT converted to &nbsp; which they naturally
word (unless .dontHSC_rte is set). You can disable that by this flag.

allowedFontColors list of HTMLcolors (Applies for “ts_transform” and "css_transform" only (function getKeepTags))

Direction: To DB
If set, this is the only colors which will be allowed in font-tags! Case insensitive.

allowedClasses list of strings (Applies for “ts_transform” and "css_transform" only (function getKeepTags))

Direction: To DB
Allowed general classnames when content is stored in database. Could be a list
matching the number of defined classes you have. Case-insensitive.
This might be a really good idea to do, because when pasting in content from MS word
for instance there are a lot of and <P> tags which may have class-names in.
So by setting a list of allowed classes, such foreign classnames are removed.
If a classname is not found in this list, the default is to remove the class-attribute.

skipAlign
skipClass

boolean (Applies for “ts_transform” and "css_transform" only (function divideIntoLines))

If set, then the align and class attributes of <P>/<DIV> sections (respectively) will be
ignored. Normally <P>/<DIV> tags are preserved if one or both of these attributes are
present in the tag. Otherwise it's removed.

keepPDIVattribs list of tag attributes
(strings)

(Applies for “ts_transform” and "css_transform" only (function divideIntoLines))

“align” and “class” are the only attributes preserved for <P>/<DIV> tags. Here you can
specify a list of other attributes to preserve.

remapParagraphTag string / boolean (Applies for “ts_transform” and "css_transform" only (function divideIntoLines))

When <P>/<DIV> sections are converted to be put into the database, the tag - P or
DIV - is preserved. However setting this options to either P or DIV will force the section
to be converted to the one or the other.
If the value is set true (1), then it works as a general disable-flag for the whole section-
convertion stuff here and the result will be no tags preserved what so ever. Just
removed.

useDIVasParagraphTagFor
RTE

string (Applies for “ts_transform” only and "css_transform" (function TS_transform_rte))

Use <DIV>-tags for sections when converting lines from database to RTE. Default is
<P>. Applies only to lines which has NO tag wrapped around already.

preserveTables boolean (Applies for “ts_transform”)

If set, tables are preserved

TYPO3 Core APIs - 152

Property: Data type: Description:
dontFetchExtPictures boolean (Applies for “ts_images”)

If set, images from external urls are not fetched for the page if content is pasted from
external sources. Normally this process of copying is done.

plainImageMode boolean/string (Applies for “ts_images”)

If set, all “plain” local images (those that are not magic images) will be cleaned up in
some way.
If the value is just set, then the style attribute will be removed after detecting any
special width/height CSS attributes (which is what the RTE will set if you scale the
image manually) and the border attribute is set to zero.
You can also configure with special keywords. So setting “plainImageMode” to any of
the value below will perform special processing:

“lockDimensions” : This will read the real dimensions of the image file and force these
values into the tag. Thus this option will prevent any user applied scaling in the
image!
“lockRatio” : This will allow users to scale the image but will automatically correct the
height dimension so the aspect ratio from the original image file is preserved.
“lockRatioWhenSmaller” : Like “lockRatio”, but will not allow any scaling larger than the
original size of the image.

exitHTMLparser_rte
exitHTMLparser_db
entryHTMLparser_rte
entryHTMLparser_db

boolean/-
>HTMLparser

(Applies for all kinds of processing)

Allows you to enable/disable the HTMLparser for the content before (entry) and after
(exit) the content is processed with the predefined processors (eg. ts_images or
ts_transform).
There is no default values set.

disableUnifyLineBreaks boolean (Applies for all kinds of processing)

When entering the processor all \r\n linebreaks are converted to \n (13-10 to 10). When
leaving the processor all \n is reconverted to \r\n (10 to 13-10).
This options disables that processing...

usertrans.[user-defined
transformation key]

- Custom option-space for userdefined transformations.
See example from section about custom transformations.

[page:->PROC]

Custom transformations API
Instead of using the built-in transformations of TYPO3 you can program your own. This is done by creating a PHP class with
two methods for transformation. Additionally you have to define a key (like "css_transform") for your transformation so you
can refer to it in the configuration of Rich Text Editors.

Custom transformation key
You should pick a custom transformation key which is prefixed with either "tx_" or "user_". Use "tx_[extension key]_[suffix]" if
you deliver your transformation inside an extension.

Notice: If you pick one of the default transformation keys (except the meta-transformations) you will simply override it and
your transformation will be called instead!

Registering the transformation key in the system
In "ext_localconf.php" you simply set a $TYPO3_CONF_VARS variable to point to the class which contains the
transformation methods:

$TYPO3_CONF_VARS['SC_OPTIONS']['t3lib/class.t3lib_parsehtml_proc.php']['transformation']['tx_myext']
 = 'EXT:myext/custom_transformation.php:user_transformation';

Here the transformation key is defined to be "tx_myext" (assuming the extension has the extension key "myext") and the
value points to a file inside the transformation which will contain the class "user_transformation" (instantiated by
t3lib_div::getUserObj())

This class must contain two methods, "transform_db" and "transform_rte" for each transformation direction.

Code listing of "user_transformation"
This code listing shows a simple transformation. When content is delivered to the RTE it will add a <hr/> tag to the end of the
content. When the content is stored in the database any <hr/> tag in the end of the content will be removed and substituted
with whitespace. This is of totally useless but nevertheless shows the concept of transformations between RTE and DB.

 0: /**
 1: * Custom RTE transformation
 2: */

TYPO3 Core APIs - 153

 3: class user_transformation {
 4:
 5: // object; Reference to the parent object, t3lib_parsehtml_proc
 6: var $pObj;
 7:
 8: // Transformation key of self.
 9: var $transformationKey = 'tx_myext';
 10:
 11: // Will contain transformation configuration if found:
 12: var $conf;
 13:
 14:
 15: /**
 16: * Setting specific configuration for this transformation
 17: *
 18: * @return void
 19: */
 20: function initConfig() {
 21: $this->conf = $this->pObj->procOptions['usertrans.'][$this->transformationKey.'.'];
 22: }
 23:
 24: /**
 25: * Reserved method name, called when content is transformed for DB storage
 26: * If "proc.usertrans.tx_myext.addHrulerInRTE = 1" then a horizontal ruler in the
 27: * end of the content will be removed (if found)
 28: *
 29: * @param string RTE HTML to clean for database storage
 30: * @return string Processed input string.
 31: */
 32: function transform_db($value) {
 33: $this->initConfig();
 34:
 35: if ($this->conf['addHrulerInRTE']) {
 36: $value = eregi_replace('<hr[[:space:]]*[\/]>[[:space:]]*$','',$value);
 37: }
 38:
 39: return $value;
 40: }
 41:
 42: /**
 43: * Reserved method name, called when content is transformed for RTE display
 44: * If "proc.usertrans.tx_myext.addHrulerInRTE = 1" then a horizontal ruler
 45: * will be added in the end of the content.
 46: *
 47: * @param string Database content to transform to RTE ready HTML
 48: * @return string Processed input string.
 49: */
 50: function transform_rte($value) {
 51: $this->initConfig();
 52:
 53: if ($this->conf['addHrulerInRTE']) {
 54: $value.='<hr/>';
 55: }
 56:
 57: return $value;
 58: }
 59: }

Comments to code listing
● The transformation methods "transform_rte" and "transform_db" takes a single argument which is the value to transform.

They have to return that value again.

● The internal variable $pObj is set to be a reference to the parent object which is an instance of "t3lib_parsehtml_proc".
Inside of this object you can access the default transformation functions if you need to and in particular you can read out
configuration settings.

● The internal variable $transformationKey is automatically set to the transformation key that is active.

● Notice that both transformation functions call initConfig() (line 33 and 51) which reads custom configuration.

Using the transformation
In order to use the transformation you simply use it in the list of transformations in Special Configuration. Here is an example
that works:

 1: 'TEST01' => Array (
 2: 'label' => 'TEST01: Text field',
 3: 'config' => Array (
 4: 'type' => 'text',
 5:),
 6: 'defaultExtras' => 'richtext[*]:rte_transform[mode=tx_myext-css_transform]'
 7:),

TYPO3 Core APIs - 154

The order is important. The order in this list is the order of calling when the direction is "db". If the order is reversed the <hr/>
tag will come out as regular text in the RTE because "css_transform" protects all non-allowed tags with htmlspecialchars().

Now the transformations should be called correctly. Before the <hr/> will be added/removed we also have to configure
through Page TSconfig (because we programmed our transformation to look for this configuration option):

RTE.default.proc.usertrans.tx_myext.addHrulerInRTE = 1

That's all!

Historical perspective on RTE transformations
Introduction
The next sections describe in more details the necessity of RTE transformations. The text is written at the birth of
transformations and might therefore be slightly oldfashioned. However it checked out generally OK and may help you to
further understand why these issues exist. The argumentation is still valid.

Properties and 'transformations'
The RTE applications typically expect to be fed with content formatted as HTML. In effect an RTE will discard content it
doesn't like, for instance fictitious HTML tags and line breaks. Also the HTML content created by the RTE editor is not
necessarily as 'clean' as you might like.

The editor has the ability to paste in formatted content copied/cut from other websites (in which case images are included!) or
from text processing applications like MS Word or Star Office. This is a great feature and may solve the issue of transferring
formatted content from eg. Word into TYPO3.

However these inherent features - good or bad - raises the issue how to handle content in a field which we do not wish to
'pollute' with unnecessary HTML-junk. One perspective is the fact that we might like to edit the content with Netscape later
(for which the RTE cannot be used, see above) and therefore would like it to be 'human readable'. Another perspective is if
we might like to use only Bold and Italics but not the alignment options. Although you can configure the editor to display only
the bold and italics buttons, this does not prevent users from pasting in HTML-content copied from other websites or from
Microsoft Word which does contain tables, images, headlines etc.

The answer to this problem is a so called 'transformation' which you can configure in the $TCA (global, authoritative
configuration) and which you may further customize through Page TSconfig (local configuration for specific branches of the
website). The issue of transformations is best explained by the following example from the table, tt_content (the content
elements).

RTE transformations in Content Elements
The RTE is used in the bodytext field of the content elements, configured for the types 'Text' and 'Text w/Image'.

The configuration of the two 'Text'-types are the same: The toolbar includes only a subset of the total available buttons. The
reason is that the text content of these types, 'Text' and 'Text w/Image' is traditionally not meant to be filled up with HTML-
codes. But more important is the fact that the content is usually (by the standard TypoScript content rendering used on the
vast majority of TYPO3 websites!) parsed through a number of routines.

In order to understand this, here is an outline of what typically happens with the content of the two Text-types when rendered
by TypoScript for frontend display:

1. All line breaks are converted to
 codes.

(Doing this enables us to edit the text in the field rather naturally in the backend because line breaks in the edit field
comes out as line breaks on the page!)

2. All instances of 'http://...' and 'mailto:....' are converted to links.

(This is a quick way to insert links to URLs and email address)

3. The text is parsed for special tags, so called 'typotags', configured in TypoScript. The default typotags tags are <LINK>
(making links), <TYPOLIST> (making bulletlists), <TYPOHEAD> (making headlines) and <TYPOCODE> (making

TYPO3 Core APIs - 155

This is how the toolbar looks if the type of the content element is not 'Rich Text' but 'Text'.

monospaced formatting).

(The <LINK> tag is used to create links between pages inside TYPO3. Target and additional parameters are
automatically added which makes it a very easy way to make sure, links are correct. <TYPOLIST> renders each line
between the start and end tag as a line in a bulletlist, formatted like the content element type 'Bulletlist' would be. This
would typically result in a bulletlist placed in a table and not using the bullet-list tags from HTML. <TYPOHEAD> would
display the tag content as a headline. The type-parameter allows to select between the five default layout types of content
element headlines. This might include graphical headers. <TYPOCODE> is not converted).

4. All other 'tags' found in the content are converted to regular text (with htmlspecialchars) unless the tag is found in the
'allowTags' list.

(This list includes tags like 'b' (bold) and 'i' (italics) and so these tags may be used and will be outputted. However tags
like 'table', 'tr' and 'td' is not in this list by default, so table-html code inserted will be outputted as text and not as a table!)

5. Constants and search-words - if set - will be highlighted or inserted.

(This feature will mark up any found search words on the pages if the page is linked to from a search result page.)

6. And finally the result of this processing may be wrapped in -tags, <p>-tags or whatever is configured. This depends
on whether a stylesheet is used or not. If a stylesheet is used the individual sections between the typotags are usually
wrapped separately.

Now lets see how this behaviour challenges the use of the RTE. This describes how the situation is handled regarding the
two Text-types as mentioned above. (Numbers refer to the previous bulletlist):

1. Line breaks: The RTE removes all line breaks and makes line breaks itself by either inserting a <P>...</P> section or
<DIV>...</DIV>. This means we'll have to convert existing lines to <P>...</P> before passing the content to the RTE and
further we need to revert the <DIV> and <P> sections in addition to the
-tags to line breaks when the content is
returned to the database from the RTE.

The greatest challenge here is however what to do if a <DIV> or <P> tag has parameters like 'class' or 'align'. In that case
we can't just discard the tag. So the tag is preserved.

2. The substitution of http:// and mailto: does not represent any problems here.

3. "Typotags": The typotags are not real HTML tags so they would be removed by the RTE. Therefore those tags must be
converted into something else. This is actually an opportunity and the solution to the problem is that all <LINK>-tags are
converted into regular <A>-tags, all <TYPOLIST> tags are converted into or sections (ordered/unordered
lists, type depends on the type set for the <TYPOLIST> tag!), <TYPOHEAD>-tags are converted to <Hx> tags where the
number is determined by the type-parameter set for the <TYPOHEAD>-tag. The align/class-parameter - if set - is also
preserved. When the HTML-tags are returned to the database they need to be reverted to the specific typotags.

Other typotags (non-standard) can be preserved by being converted to a -section and back. This must be
configured through Page TSconfig.

(Update: With "css_styled_content" and the transformation "ts_css" only the <link> typotag is left. The <typolist> and
<typohead> tags are obsolete and regular HTML is used instead)

4. Allowed tags: As not all tags are allowed in the display on the webpage, the RTE should also reflect this situation. The
greatest problem is tables which are (currently) not allowed with the Text-types. The reason for this goes back to the
philosophy that the field content should be human readable and tables are not very 'readable'.

(Update: With "css_styled_content" and the transformation "ts_css" tables are allowed)

5. Constants and search words are no problem.

6. Global wrapping does not represent a problem either. But this issue is related more closely to the line break-issue in bullet
1.

Finally images inserted are processed very intelligently because the 'magic' type images are automatically post-processed to
the correct size and proportions after being changed by the RTE in size.

Also if images are inserted by a copy/paste operation from another website, the image inserted will be automatically
transferred to the server when saved.

In addition all URLs for images and links are inserted as absolute URLs and must be converted to relative URLs if they are
within the current domain.

Conclusion:
These actions are done by so called transformations which are configured in the $TCA. Basically these transformations are
admittedly very customized to the default behaviour of the TYPO3 frontend. And they are by nature “fragile” constructions
because the content is transformed forth and back for each interaction between the RTE and the database and may so be
erroneously processed. However they serve to keep the content stored in the database 'clean' and human readable so it may
continuously be edited by non-RTE browsers and users. And furthermore it allows us to insert TYPO3-bulletlists and headers
(especially graphical headers) visually by the editor while still having TYPO3 controlling the output.

TYPO3 Core APIs - 156

Skinning API
$TBE_STYLES
When you make skins for TYPO3 you basically set up values in the global array $TBE_STYLES which will make the system
use alternative icons, stylesheets, framewidths etc.

You change values in $TBE_STYLES through an extension, setting the alternative values in the “ext_tables.php” file of the
extension. For an example, see the extension “skin360”.

$TBE_STYLES API
The $TBE_STYLES array contains these keys

When the values are references to files (icons, logoes etc) the path must be relative to the TYPO3 backend dir.

Key Subkeys Description
colorschemes [0-x] Related to TCEforms. See other section about visual style of TCEforms.

styleschemes [0-x] Related to TCEforms. See other section about visual style of TCEforms.

borderschemes [0-x] Related to TCEforms. See other section about visual style of TCEforms.

mainColors bgColor
bgColor2
bgColor3
bgColor4
bgColor5
bgColor6
hoverColor

Main colorscheme in interface. Notice that these colors are redundantly set in the
stylesheet and you have to keep them in sync. Setting the colors here is still
necessary but secondary in priority to the stylesheet settings.
Always use #xxxxxx color definitions!

Here is a description of the colors.
• bgColor

Light page background color
• bgColor2

Alternative header background (steel blue)
• bgColor3

Color for “documents” - concept which is now removed. Anyways, light color)
• bgColor4

For table content cells (light tablerow background, brownish)
• bgColor5

For table header cells in sections (light tablerow background, greenish)
• bgColor6

For backend module section headers (light H2 background, yellowish. Light)
• hoverColor

Link hover color

Example:

$TBE_STYLES['mainColors'] = Array (
 'bgColor' => '#EDF4EB',
 'bgColor2' => '#7C8591',
 'bgColor3' => '#E4E8F2',
 'bgColor4' => '#92AA8B',
 'bgColor5' => '#A5B7C1',
 'bgColor6' => '#C7BF81',
 'hoverColor' => '#800000'
);

Corresponding stylesheet values:
Here is an example of the stylesheet values corresponding to the “mainColors” values
shown above. Notice how they share the same name - but with some variations. For
instance “bgColor-10” and “bgColor-20” is based on “bgColor” but darkend approx.
10% and 20%. Such variations are available for usage when you want alternating
values in a listing.

.bgColor {background-color: #F7F3EF;}

.bgColor-10 {background-color: #ede9e5;}

.bgColor-20 {background-color: #e3dfdb;}

.bgColor2 {background-color: #9BA1A8;}

.bgColor3 {background-color: #F6F2E6;}

.bgColor3-20 {background-color: #e2ded2;}

.bgColor4 {background-color: #D9D5C9;}

.bgColor4-20 {background-color: #c5c1b5;}

.bgColor5 {background-color: #ABBBB4;}

.bgColor6 {background-color: #E7DBA8;}

(From file typo3/stylesheet.css)

background - Background image generally in the backend
Depricated - use the $TBE_STYLES['skinImg'] feature instead!

TYPO3 Core APIs - 157

Key Subkeys Description
logo - Logo in alternative backend, top left: 129x32 pixels

Depricated - use the $TBE_STYLES['skinImg'] feature instead!

logo_login - Login-logo: 333x63 pixels
Depricated - use the $TBE_STYLES['skinImg'] feature instead!

loginBoxImage_rotationFolder - Setting login box image rotation folder. From this folder images are selected randomly
for display in the login box.

stylesheet - Alternative stylesheet to the default "typo3/stylesheet.css" stylesheet.

stylesheet2 - Additional stylesheet (not used by default). Set BEFORE any in-document styles

styleSheetFile_post - Additional stylesheet. Set AFTER any in-document styles

inDocStyles_TBEstyle - Additional default in-document styles.

dims leftMenuFrameW
topFrameH
shortcutFrameH
selMenuFrame
navFrameWidth

Setting of alternative dimensions of framesets in TYPO3:

Description of subkeys:
• FrameW

Left menu frame width
• topFrameH

Top frame heigth
• shortcutFrameH

Shortcut frame height
• selMenuFrame

Width of the selector box menu frame
• navFrameWidth

Default navigation frame width

Example:

 // Alternative dimensions for frameset sizes:
$TBE_STYLES['dims']['leftMenuFrameW']=165;
$TBE_STYLES['dims']['topFrameH']=35;
$TBE_STYLES['dims']['shortcutFrameH']=35;
$TBE_STYLES['dims']['selMenuFrame']=180;
$TBE_STYLES['dims']['navFrameWidth']=350;

scriptIDindex [script-id] All scripts in TYPO3s backend calculates an automatic “script-id”. This id can be
found in the HTML source:

<html>
<head>

<!-- TYPO3 Script ID: typo3/mod/web/perm/index.php -->
...

With the “scriptIDindex” feature you can override any $TBE_STYLES setting on a per-
script basis as long as you know the script ID.

An example is in the “skin360” extension where the rollover color of the Context
Sensitive Menus is defined by $TBE_STYLES['mainColors']['bgColor5']. However the
color should be different from the general “bgColor5”. This can be done by the PHP
line below - because the script ID 'typo3/alt_clickmenu.php' simply configures the
bgColor5 value differently when the alt_clickmenu.php script requests it!

$TBE_STYLES['scriptIDindex']['typo3/alt_clickmenu.php']
['mainColors']['bgColor5']='#E0E7C7';

TYPO3 Core APIs - 158

Key Subkeys Description
skinImgAutoCfg absDir

relDir
forceFileExtension
scaleFactor

Configures automatic detection of alternative icons. This works by setting up a
directory inside of which TYPO3 looks to find a file with the same filename as the one
requested - and if found, the icon is used instead.

• absDir
Absolute path to the directory with the icons (needed so icons can be read by
getimagesize)

• relDir
Relative path to the directory with the icons (needed for making the tag.)

• forceFileExtension
This can allow you to specify an alternative file extension to look for. For instance
most icons in TYPO3 are gif-files. By setting this value to “png” all filenames
looked for will be the gif-filename body but with a “.png” extension.

• scaleFactor
Allows you to enter a value between 0-1 by which to scale the icons. Thus you
can size-down all icons from the skin.
Notice: Backend Module icons are not affected by this scaling factor

Example code listing:

 // Setting up auto detection of alternative icons:
$TBE_STYLES['skinImgAutoCfg']=array(
 'absDir' => t3lib_extMgm::extPath($_EXTKEY).'icons/',
 'relDir' => t3lib_extMgm::extRelPath($_EXTKEY).'icons/',
 'forceFileExtension' => 'png',
 'scaleFactor' => 2/3,
);

skinImg [icon reference] Manual configuration of icon alternatives.
This is needed especially for backend module icons since they are not possible to
skin with the feature “skinImgAutoCfg” which is otherwise recommended instead of
manual configuration.

Generally each subkey is a reference to the icon, relative to TYPO3 main dir (eg.
“gfx/ol/blank.gif”) or if from an extension, relative to “ext/[extension key]/” folder.
For modules the key is special. It is prefixed “MOD:” and then the module key. For
example “MOD:web/website.gif” or “MOD:web_uphotomarathon/tab_icon.gif”

For examples, see code listing below.

Here is an example code listing for how most of these values can be set up in a “ext_tables.php” file for an extension:

 0:
 1:
 2: if (TYPO3_MODE=='BE') {
 3:
 4: $presetSkinImgs = is_array($TBE_STYLES['skinImg']) ? $TBE_STYLES['skinImg'] : array(); //
Means, support for other extensions to add own icons...
 5:
 6: $TBE_STYLES['mainColors'] = Array (
 7: 'bgColor' => '#EDF4EB',
 8: 'bgColor2' => '#7C8591',
 9: 'bgColor3' => '#E4E8F2',
 10: 'bgColor4' => '#92AA8B',
 11: 'bgColor5' => '#A5B7C1',
 12: 'bgColor6' => '#C7BF81',
 13: 'hoverColor' => '#800000'
 14:);
 15:
 16: // Setting the relative path to the extension in temp. variable:
 17: $temp_eP = t3lib_extMgm::extRelPath($_EXTKEY);
 18:
 19: // Setting login box image rotation folder:
 20: $TBE_STYLES['loginBoxImage_rotationFolder'] = $temp_eP.'loginimages/';
 21:
 22: // Setting up stylesheets (See template() constructor!)
 23: $TBE_STYLES['styleSheetFile_post'] = $temp_eP.'stylesheet_post.css'; // Additional
stylesheet. Set AFTER any in-document styles
 24:
 25: // Alternative dimensions for frameset sizes:
 26: $TBE_STYLES['dims']['leftMenuFrameW']=165; // Left menu frame width
 27: $TBE_STYLES['dims']['topFrameH']=35; // Top frame heigth
 28: $TBE_STYLES['dims']['shortcutFrameH']=35; // Shortcut frame height
 29: $TBE_STYLES['dims']['selMenuFrame']=180; // Width of the selector box menu frame
 30: $TBE_STYLES['dims']['navFrameWidth']=350; // Default navigation frame width
 31:
 32: // Setting roll-over background color for click menus:
 33: // Notice, this line uses the the 'scriptIDindex' feature to override another value in

TYPO3 Core APIs - 159

this array (namely $TBE_STYLES['mainColors']['bgColor5']), for a specific script
"typo3/alt_clickmenu.php"
 34: $TBE_STYLES['scriptIDindex']['typo3/alt_clickmenu.php']['mainColors']['bgColor5']='#E0E7C7';
 35:
 36: // Setting up auto detection of alternative icons:
 37: $TBE_STYLES['skinImgAutoCfg']=array(
 38: 'absDir' => t3lib_extMgm::extPath($_EXTKEY).'icons/',
 39: 'relDir' => t3lib_extMgm::extRelPath($_EXTKEY).'icons/',
 40: 'forceFileExtension' => 'png', // Force to look for PNG alternatives...
 41:);
 42:
 43: // Manual setting up of alternative icons. This is mainly for module icons which has a
special prefix:
 44: $TBE_STYLES['skinImg'] = array_merge($presetSkinImgs, array (
 45: 'gfx/ol/blank.gif' => array('clear.gif','width="27" height="24"'),
 46:
 47: 'MOD:web/website.gif' => array($temp_eP.'icons/module_web.png','width="24" height="24"'),
 48: 'MOD:web_layout/layout.gif' => array($temp_eP.'icons/module_web_layout.png','width="24"
height="24"'),
 49: 'MOD:web_view/view.gif' => array($temp_eP.'icons/module_web_view.png','width="23"
height="24"'),
 50: 'MOD:web_list/list.gif' => array($temp_eP.'icons/module_web_list.png','width="24"
height="24"'),
 51: 'MOD:web_info/info.gif' => array($temp_eP.'icons/module_web_info.png','width="24"
height="24"'),
 52: 'MOD:web_perm/perm.gif' => array($temp_eP.'icons/module_web_perms.png','width="24"
height="24"'),
 53: 'MOD:web_func/func.gif' => array($temp_eP.'icons/module_web_func.png','width="24"
height="24"'),
 54: 'MOD:web_ts/ts1.gif' => array($temp_eP.'icons/module_web_ts.png','width="24"
height="24"'),
 55: 'MOD:web_modules/modules.gif' => array($temp_eP.'icons/module_web_modules.png','width="24"
height="24"'),
 56: 'MOD:file/file.gif' => array($temp_eP.'icons/module_file.png','width="24" height="24"'),
 57: 'MOD:file_list/list.gif' => array($temp_eP.'icons/module_file_list.png','width="24"
height="24"'),
 58: 'MOD:file_images/images.gif' => array($temp_eP.'icons/module_file_images.png','width="24"
height="24"'),
 59: 'MOD:doc/document.gif' => array($temp_eP.'icons/module_doc.png','width="24"
height="24"'),
 60: 'MOD:user/user.gif' => array($temp_eP.'icons/module_user.png','width="24" height="24"'),
 61: 'MOD:user_task/task.gif' => array($temp_eP.'icons/module_user_taskcenter.png','width="24"
height="24"'),
 62: 'MOD:user_setup/setup.gif' => array($temp_eP.'icons/module_user_setup.png','width="24"
height="24"'),
 63: 'MOD:tools/tool.gif' => array($temp_eP.'icons/module_tools.png','width="25"
height="24"'),
 64: 'MOD:tools_beuser/beuser.gif' => array($temp_eP.'icons/module_tools_user.png','width="24"
height="24"'),
 65: 'MOD:tools_em/em.gif' => array($temp_eP.'icons/module_tools_em.png','width="24"
height="24"'),
 66: 'MOD:tools_dbint/db.gif' => array($temp_eP.'icons/module_tools_dbint.png','width="25"
height="24"'),
 67: 'MOD:tools_config/config.gif' => array
($temp_eP.'icons/module_tools_config.png','width="24" height="24"'),
 68: 'MOD:tools_install/install.gif' => array
($temp_eP.'icons/module_tools_install.png','width="24" height="24"'),
 69: 'MOD:tools_log/log.gif' => array($temp_eP.'icons/module_tools_log.png','width="24"
height="24"'),
 70: 'MOD:tools_txphpmyadmin/thirdparty_db.gif' => array
($temp_eP.'icons/module_tools_phpmyadmin.png','width="24" height="24"'),
 71: 'MOD:tools_isearch/isearch.gif' => array
($temp_eP.'icons/module_tools_isearch.png','width="24" height="24"'),
 72: 'MOD:help/help.gif' => array($temp_eP.'icons/module_help.png','width="23" height="24"'),
 73: 'MOD:help_about/info.gif' => array($temp_eP.'icons/module_help_about.png','width="25"
height="24"'),
 74: 'MOD:help_aboutmodules/aboutmodules.gif' => array
($temp_eP.'icons/module_help_aboutmodules.png','width="24" height="24"'),
 75:));
 76:
 77: // Adding icon for photomarathon extensions' backend module, if enabled:
 78: if (t3lib_extMgm::isloaded('user_photomarathon')) {
 79: $TBE_STYLES['skinImg']['MOD:web_uphotomarathon/tab_icon.gif'] = array
($temp_eP.'icons/ext/user_photomarathon/tab_icon.png','width="24" height="24"');
 80: }
 81: // Adding icon for templavoila extensions' backend module, if enabled:
 82: if (t3lib_extMgm::isloaded('templavoila')) {
 83: $TBE_STYLES['skinImg']['MOD:web_txtemplavoilaM1/moduleicon.gif'] = array
($temp_eP.'icons/ext/templavoila/mod1/moduleicon.png','width="24" height="24"');
 84: }
 85: }

Notice the last lines from 77-84; they configures alternative icons two extensions, “user_photomarathon” (see testsite
package) and “templavoila”. Thus the skin can include skinning information for other extensions.

TYPO3 Core APIs - 160

When talking about skinning across extensions another way of making sure that a skin also includes other extensions is
shown in line 4 where any values set in $TBE_STYLES['skinImg'] prior to this extension is preserved. Thus other extensions
can also autonomously provide support for popular skins by themselves!

Directory structure for “skinImgAutoCfg” feature
In the example above the directory “icons/” inside the extension is configured to contain the alternative icons which are
automatically detected.

Inside of this directory the structure must reflect the icon reference of the “skinImg” feature which would have otherwise
addressed the icon.

Looking at this screenshot makes it easy to understand. If you want to skin the icon “gfx/closedok.gif” then just put a file with
the same name (possible as “png” if “forceFileExtension” was set to “png”) in the folder “icons/gfx/”.

If you have an extension, say, “sys_action” and wants to skin the Action database record icon (sys_action.gif) simply put an
alternative file for “sys_action.gif” into the folder “ext/sys_action/”

If you look in the “icons” folder of the “skin360” extension you can also see that all the module icons are located there - but
notice that they are manually referenced in the “skinImg” key!

How to make your extensions compatible with skinning
Basically, your extensions backend modules will be skinnable by TYPO3 as long as you use the template class to create
output. This is the case in wellmade extensions so by default you should expect no problems.

However your usage of icons is another story. Here you have to pass all icon filenames and sizes to a function,
t3lib_iconWorks::skinImg(), which will either return the input value or any alternative values should an alternative icon have
been configured by a skin extension.

There are two types of icons you can encounter:

• Database record icons

• Any other icon for your interfaces.

Database record icons are not a problem. For a long time the consensus has been that if you want to create an icon for a
database record you do like this:
$iconImg = t3lib_iconWorks::getIconImage('sys_note',$row,$GLOBALS['BACK_PATH'],' title="This is my
icon"');

As long as you keep using the t3lib_iconWorks::getIconImage() function the icons will be skinned.

Any other icon you might use - either from inside the extension or eg. typo3/gfx/ - should now be created like this:
$iconImg = '<img'.t3lib_iconWorks::skinImg($GLOBALS['BACK_PATH'],'gfx/edit2.gif','width="11"
height="12"').' title="My Icon" alt="" />';

This is contrary to the non-skinned state which would look like this:

TYPO3 Core APIs - 161

$iconImg = '';

So as you can see it is the src, width and height attributes which are affected!

Skinning support for local extension icons
If you want to add skinning support for icons found inside the extension itself, then use this method:
$iconImg = '<img'.t3lib_iconWorks::skinImg($GLOBALS['BACK_PATH'],t3lib_extMgm::extRelPath
('templavoila').'mod1/greenled.gif','').' title="Rule applies" border="0" alt="" align="absmiddle" />';

The main thing to notice is that the relative path to the extension is prefixed the icon name:
t3lib_extMgm::extRelPath('templavoila').'mod1/greenled.gif'

Finding CSS selectors for the backend documents
In the process of skinning TYPO3 with CSS styles you should proceed from general to specific. This means

• First, create styles for main elements like BODY, H2, H3, P, PRE, INPUT etc. making the interface look as you want in
general.

• Secondly, create specific style rules for specific scripts as needed.

If you look inside “typo3/stylesheet.css” you will see that this is the way that stylesheet proceeds. In fact it might not be so
bad an idea to take this stylesheet as an example for your own! In that case you can either choose to totally substitute the
default stylesheet, “typo3/stylesheet.css”, with a new one (by $TBE_STYLES['stylesheet']) or simply create an additional
stylesheet (set up by $TBE_STYLES['styleSheetFile_post']) which will be included as the last one - and in this stylesheet you
override any of the previous rules you want to change (recommended method).

Addressing specific elements in the backend
Lets say you want to specifically style the two elements shown in this image:

• #1 should be blueish in the background

• #2 should have a dotted border around

What you do is this:

• Rightclick the frame, select “Show HTML source” or whatever your browser allows you.

• Paste the HTML source of the script into the tool “CSS analyzer” found in the extension “extdeveval” - this will analyse the
hierarchy of CSS selectors.

• Find your selector, write CSS rules!

In this screenshot you can see how I have pasted the HTML source of the script into the tool mentioned and in return I get a
nice overview of the CSS selectors inside:

TYPO3 Core APIs - 162

In less than 10 seconds this has allowed me to spot that the exact address of the header cell is “BODY#typo3-db-list-php
TABLE.typo3-dblist TR TD.c-headLineTable” and I can now add to my stylesheet:

BODY#typo3-db-list-php TABLE.typo3-dblist TR TD.c-headLineTable {
background-color: #ccccff;

}

Likewise I could easily find that the two selector boxes were encapsulated in a DIV section which I could address like this:

BODY#typo3-db-list-php DIV#typo3-listOptions {
border: dotted 1px #999999;

}

TYPO3 Core APIs - 163

The result was:

Now, as you can see the selector contained “BODY#typo3-db-list-php” which is a specific address to the Web > List module
(using its script ID!). If I wanted my styles to be more general so also the File > Filelist module would affected, then I could (in
this case) remove the BODY#... part:
DIV#typo3-listOptions {

border: dotted 1px #999999;
}

Skinning database record icons with variations

Introduction
Database records in TYPO3 has and icon associated which can be shown in the interface. But the icon might change
according to internal settings in the record; other icons might be used as alternatives to the default and for each possible icon
certain “states” might reflect on how the icon look. For instance, if a record has the “hidden” flag set, the icon should be gray
with a red cross over in order to reflect this state visually.

Until version 3.6.0 TYPO3 has automatically calculated new versions of database icons when needed by the system. Thus
you needed to supply only one icon - all variations would be automatically generated and stored in typo3temp/. However this
auto generation depended on GDlib with gif-support and that has been a well known problem for many years since not
everyone has access to these features.

In TYPO3 3.6.0 the automatic generation is disabled (can be enabled by setting $TYPO3_CONF_VARS['GFX']['noIconProc']
=0) and instead most icons have their most used states shipped along pre-rendered instead.

This solution not only solves the last mandatory dependency on GDlib for TYPO3 but also provides a way for skinning of
various icon states - since skinned icons would be too hard to do processing for!

Pre-rendered icon states
The number of variations for an icon of a database record depends on configuration in $TCA. The most easy way to get an
overview of the icons you would need to produce as variations is to use the tool “Table Icon Listing” in the “extdeveval”
extension.

TYPO3 Core APIs - 164

This is an example of how that tool shows the icons for “Backend Users” and their variations:

Notice, the default icon is “gfx/i/be_users.gif”

• If the hidden flag is set, the icon name is “be_users__h.gif”

• If the starttime is set, the icon name is “be_users__t.gif”

• If both starttime and hidden flag is set, the icon name is “be_users__ht.gif”

• If an icon carries a state that is not found, then show “be_users__x.gif” (default icon for a state that does not have an icon.
If this icon is not set a generalized default icon is shown; thus a record with a special state will never be shown just plain!)

For an extension like “mininews” we can perform the same analysis:

Again, notice how the variations over “icon_tx_mininews_news.gif” is prefixed with “flags” like “__h” and “__x”

If we enable more of the render options we might eventually hit a combination of options which is not found pre-rendered
though:

TYPO3 Core APIs - 165

As you can see the “endtime” flag has no icon associated with it.

Automatic creation of pre-made variations
In order to create variations for inclusion in your extensions (for the default icon) you can enable the rendering of icons if you
like (in localconf.php):

$TYPO3_CONF_VARS['GFX']['noIconProc']=0;

Then you reload the “Table Icon Listing” and the icons are generated in typo3temp/:

If you want the new icons to be included in the extension you simply

• Move them from typo3temp/ into the extension folder (here “typo3conf/ext/mininews/”)

• Rename them to the expected names, eg. “icon_fb7ee72ecd_icon_tx_mininews_news__f.gif.gif” to
“icon_tx_mininews_news__f.gif” (remember to also remove the “double-gif” in the extension!)

And after another reload you will be assured that the icon is found correctly:

(Tip for code hackers: Inside “ext/extdeveval/mod1/class.tx_extdeveval_iconlister.php there is a line with a function call,
“$this->renameIconsInTypo3Temp();” which is commented out - if you uncomment this function call it will rename icons made
in typo3temp/ to filenames that can be copied directly into the extension you are making. Basically this removes
“icon_fb7ee....” from the temporary file!)

TYPO3 Core APIs - 166

Limits to number of pre-made icons
Since the number of combinations can be staggering you might often have to settle for a compromise where you define which
states are the most likely to occur and then give those priority when you create variations - otherwise you might have to make
hundreds of icons!

Thus you can find that the pages table does not have pre-made icons for all “Module” icons. Only the “hidden” state has been
considered general enough to allow for a pre-made icon - enabling starttime results in a “no_icon_found.gif” version as you
can see below:

TYPO3 Core APIs - 167

Data Formats

<T3DataStructure>
Introduction
TYPO3 offers an XML format, T3DataStructure, which defines a hierarchical data structure. In itself the data structure
definition does do much - it is only a back bone for higher level applications which can add their own configuration inside.

Such applications can be:

• “FlexForms” - a TCEform type which will allow users to build information hierarchies (in XML) according to the Data
Structure. In this sense the Data Structure is like a DTD for the backend which can render a dynamic form based on the
Data Structure

• “TemplaVoila” - an extension which uses the Data Structure as backbone for mapping template HTML to data.

This documentation of a data structure will document the general aspects of the XML format and leave the details about
FlexForms and TemplaVoila to be documented elsewhere.

Some other facts about Data Structures (DS):

• A Data Structure is defined in XML with the document tag named “<T3DataStructure>”

• The XML format generally complies with what can be converted into a PHP array by t3lib_div::xml2array() - thus it directly
reflects how a multidimensional PHP array is constructed.

• A Data Structure can be arranged in a set of “sheets”. The purpose of sheets will depend on the application. Basically
sheets are like a one-dimensional internal categorization of Data Structures.

• Parsing a Data Structure into a PHP array is incredibly easy - just pass it to t3lib_div::xml2array() (see example below)

• “DS” is sometimes used as short for Data Structure

Elements
This is the elements and their nesting in the Data Structure. This could probably be expressed by a DTD or XML schema
(anyone?). In this case I will just express it by an explanation of words.

Elements nesting other elements (“Array” elements):
All elements defined here cannot contain any string value but must contain another set of elements.

(In a PHP array this corresponds to saying that all these elements must be arrays.)

Element Description Child elements
<T3DataStructure> Document tag <meta>

<ROOT> or <sheets>

<meta> Can contain application specific meta settings

<ROOT>
<[field name]>

Defines an “object” in the Data Structure

• <ROOT> is reserved as tag for the first element in the Data Structure.
The <ROOT> element must have a <type> tag with the value “array” and then
define other objects nested in <el> tags.

• [field name] defines the objects name

<type>
<section>
<el>
<[application tag]>

<sheets> Defines a collection of “sheets” which is like a one-dimensional list of independant Data
Structures

<[sheet name]>

<[sheet ident]> Defines an independant data structure starting with a <ROOT> tag.
Notice: Alternatively it can be a plain value referring to another XML file which contains
the <ROOT> structure. See example below.

<ROOT>

<el> Contains a collection of Data Structure “objects” <[field name]>

Elements containing values (“Value” elements):
All elements defined here must contain a string value and no other XML tags whatsoever!

(In a PHP array this corresponds to saying that all these elements must be strings or integers.)

TYPO3 Core APIs - 168

Element Format Description
<type> Keyword string:

“array”, [blank]
(=default)

Defines the type of object.
• “array” means that the object simply contains a collection of other objects defined

inside the <el> tag on the same level
If the value is “array” you can use the boolean “<section>”. See below.

• Default value means that the object does not contain sub objects. The meaning of
such an object is determined by the application using the data structure. For
FlexForms this object would draw a form element.

Notice: If the object was <ROOT> this tag must have the value “array”

<section> Boolean, 0/1 Defines for an object of the type <array> that it must contain other “array” type objects.
The meaning of this is application specific; For FlexForms it will allow the user to select
between possible arrays of objects to create in the form. For TemplaVoila it will select
a “container” element for another set of elements inside. This is quite fuzzy unless you
understand the contexts.

Example: FlexForm configuration in “mininews” extension
Simple example of a data structure used to define a FlexForm element in TCEforms. Notice the application specific section
<TCEforms> (see documentation for FlexForms).

<T3DataStructure>
 <meta>
 <langDisable>1</langDisable>
 </meta>
 <ROOT>
 <type>array</type>
 <el>
 <field_templateObject>
 <TCEforms>
 <label>LLL:EXT:mininews/locallang_db.php:tt_content.pi_flexform.select_template<
/label>

 <config>
 <type>select</type>
 <items>
 <numIndex index=”0”>
 <numIndex index=”0”></numIndex>
 <numIndex index=”1”>0</numIndex>
 </numIndex>
 </items>
 <foreign_table>tx_templavoila_tmplobj</foreign_table>
 <foreign_table_where>
 AND tx_templavoila_tmplobj.pid=###STORAGE_PID###
 AND
tx_templavoila_tmplobj.datastructure="EXT:mininews/template_datastructure.xml"
 AND tx_templavoila_tmplobj.parent=0
 ORDER BY tx_templavoila_tmplobj.title
 </foreign_table_where>
 <size>1</size>
 <minitems>0</minitems>
 <maxitems>1</maxitems>
 </config>
 </TCEforms>
 </field_templateObject>
 </el>
 </ROOT>
</T3DataStructure>

Example #2
More complex example of a FlexForms structure, using two sheets, “sDEF” and “s_welcome” (snippet from “newloginbox”
extension).

<T3DataStructure>
 <sheets>
 <sDEF>
 <ROOT>
 <TCEforms>
 <sheetTitle>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.sheet_ge
neral</sheetTitle>
 </TCEforms>
 <type>array</type>

TYPO3 Core APIs - 169

 <el>
 <show_forgot_password>
 <TCEforms>
 <label>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.show_
forgot_password</label>
 <config>
 <type>check</type>
 </config>
 </TCEforms>
 </show_forgot_password>
 </el>
 </ROOT>
 </sDEF>
 <s_welcome>
 <ROOT>
 <TCEforms>
 <sheetTitle>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.sheet_we
lcome</sheetTitle>
 </TCEforms>
 <type>array</type>
 <el>
 <header>
 <TCEforms>
 <label>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.heade
r</label>
 <config>
 <type>input</type>
 <size>30</size>
 </config>
 </TCEforms>
 </header>
 <message>
 <TCEforms>
 <label>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.messa
ge</label>
 <config>
 <type>text</type>
 <cols>30</cols>
 <rows>5</rows>
 </config>
 </TCEforms>
 </message>
 </el>
 </ROOT>
 </s_welcome>
 </sheets>
</T3DataStructure>

Sheet references
If Data Structures are arranged in a collection of sheets you can choose to store one or more sheets externally in separate
files. This is done by setting the value of the <[sheet ident]> tag to a relative file reference instead of being a definition of the
<ROOT> element.

Example
Taking the Data Structure from Example #2 above we can now rearrange it in three files:

Main Data Structure:
<T3DataStructure>
 <sheets>
 <sDEF>fileadmin/sheets/default_sheet.xml</sDEF>
 <s_welcome>fileadmin/sheets/welcome_sheet.xml</s_welcome>
 </sheets>
</T3DataStructure>

fileadmin/sheets/default_sheet.xml
<T3DataStructure>
 <ROOT>
 <TCEforms>
 <sheetTitle>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.sheet_general</s
heetTitle>
 </TCEforms>
 <type>array</type>
 <el>

TYPO3 Core APIs - 170

 <show_forgot_password>
 <TCEforms>
 <label>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.show_forgot_p
assword</label>
 <config>
 <type>check</type>
 </config>
 </TCEforms>
 </show_forgot_password>
 </el>
 </ROOT>
</T3DataStructure>

fileadmin/sheets/welcome_sheet.xml
<T3DataStructure>
 <ROOT>
 <TCEforms>
 <sheetTitle>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.sheet_welcome</s
heetTitle>
 </TCEforms>
 <type>array</type>
 <el>
 <header>
 <TCEforms>
 <label>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.header</label
>
 <config>
 <type>input</type>
 <size>30</size>
 </config>
 </TCEforms>
 </header>
 <message>
 <TCEforms>
 <label>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.message</labe
l>
 <config>
 <type>text</type>
 <cols>30</cols>
 <rows>5</rows>
 </config>
 </TCEforms>
 </message>
 </el>
 </ROOT>
</T3DataStructure>

Syntax highlighting of a Data Structures
You can syntax highlight a data structure using the extension “extdeveval” and the code highlighter. Just copy the DS XML
content into the form:

TYPO3 Core APIs - 171

Parsing a Data Structure
You can convert a Data Structure XML document into a PHP array by the function t3lib_div::xml2array(). Taking the simple
DS above:

<T3DataStructure>
 <meta>
 <langDisable>1</langDisable>
 </meta>
 <ROOT>
 <type>array</type>
 <el>
 <field_templateObject>
 <TCEforms>
 <label>LLL:EXT:mininews/locallang_db.php:tt_content.pi_flexform.select_template<
/label>

 <config>
 <type>select</type>
 <items>
 <numIndex index=”0”>
 <numIndex index=”0”></numIndex>
 <numIndex index=”1”>0</numIndex>
 </numIndex>
 </items>
 <foreign_table>tx_templavoila_tmplobj</foreign_table>
 <foreign_table_where>
 AND tx_templavoila_tmplobj.pid=###STORAGE_PID###
 AND
tx_templavoila_tmplobj.datastructure="EXT:mininews/template_datastructure.xml"
 AND tx_templavoila_tmplobj.parent=0
 ORDER BY tx_templavoila_tmplobj.title
 </foreign_table_where>
 <size>1</size>
 <minitems>0</minitems>
 <maxitems>1</maxitems>
 </config>
 </TCEforms>
 </field_templateObject>
 </el>
 </ROOT>

TYPO3 Core APIs - 172

</T3DataStructure>

Passing this to the xml2array function and you will get an array like this (screen shot from “extdeveval”):

As you can see the format of the XML generated by t3lib_div::array2xml() is designed to reflect the array structures PHP can
contain and thus the transformation to and from XML with the functions t3lib_div::array2xml() and t3lib_div::xml2array() is
very easy and quick.

API functions for sheets
If you have a DS with sheets inside you might need to resolve the references:

<T3DataStructure>
 <sheets>
 <sDEF>fileadmin/sheets/default_sheet.xml</sDEF>
 <s_welcome>fileadmin/sheets/welcome_sheet.xml</s_welcome>
 </sheets>
</T3DataStructure>

This is done by t3lib_div::resolveSheetDefInDS() or t3lib_div::resolveAllSheetsInDS(). In fact, even if you don't have sheets in
your file but just want to stay compatible with DS XML with sheets you should use this function. For instance these function
calls will parse the DS into an array (screen shot above) and resolve the sheet definition, in this case creating a default sheet
“sDEF” (screen shot below):

$treeDat = t3lib_div::xml2array($inputCode);
$treeDat = t3lib_div::resolveAllSheetsInDS($treeDat);

Applications
For a more practical understanding of Data Structures you should study some of the applications of Data Structures:

• FlexForms - using Data Structures as a “DTD” for rendering a hierarchical editing form which saves the content back into
XML

• TemplaVoila - using Data Structures for mapping content to HTML template files.

TYPO3 Core APIs - 173

<T3locallang>
Introduction
This XML format is used for "locallang-XML" files, a format TYPO3 uses for storage of interface labels and translations of
them. The format is parsed by t3lib_div::xml2array() which means that tag-names and "index" attribute values are inter-
related in significance. The content is always in utf-8.

See "Inside TYPO3" for more details about locallang-files and the application of this format.

"locallang-XML" files are translated by a backend tool (extension "llxmltranslate") contrary to "locallang*.php" files which are
translated online on TYPO3.org. Using a backend tool makes translation faster and more "responsive" for translators who get
immediate results.

A "locallang-XML" file contains a set of labels in the default language (always English) and translations of them for each
system language in TYPO3 (around 40). Alternatively translations for a single language can be stored externally in an
"include-file" which is a practical solution for large amounts of texts in order not to bloat the files; after all people would only
need the default labels plus a single or two languages active on an installation.

Elements
This is the elements and their nesting in the locallang-XML format.

Elements nesting other elements (“Array” elements):
All elements defined here cannot contain any string value but must contain another set of elements.

(In a PHP array this corresponds to saying that all these elements must be arrays.)

Element Description Child elements
<T3locallang> Document tag <meta>

<data>
<orig_hash>
<orig_text>

<meta> Contains meta data about the locallang-XML file. Used in translation, but not inside
TYPO3 directly.

<labelContext>
<description>
<type>
<csh_table>
<fileId>
<keep_original_text>
<ext_filename_template
>

<data> Contains the data for translations

Notice: The contents in the <data> tag is all that is needed for labels inside TYPO3.
Everything else is meta information for the translation tool!

<languageKey>

<orig_hash> Contains hash-integers for each translated label of the default label at the point of
translation. This is used to determine if the default label has changed since the
translation was made.

<languageKey>

<orig_text> Contains the text of the default label that was the basis of the translated version!
This will be stored only if <meta><keep_original_text> is set. Otherwise the
information is stored in temporary files in typo3temp/ on the local server (which
means this meta-information is available but only locally.)
The original text is used to show a diff between the original base of the translation
and the new default text so a translator can quickly see what has changed.

<languageKey>

<languageKey> Array of labels for a language.
The "index" attribute contains language key

External includefile under "<data>":
If the <languageKey> tag used in the context of the <data> tag contains a string
instead of an array of labels then it indicates that all labels for the language in
question (other than "default"!) is found in another XML file pointed to by this value.
The point is to save space so locallang-XML files doesn't have to carry all
translations with them (in particular interesting for CSH content where the amounts
of text is enormous.)
The filenames of include files should not start with "locallang..." since they will then
be detected directly by the translation tool (which you don't want!). A common
practice could be to prefix them with the language key like in this example:

Example of including an external file for a specific language:
EXT:csh_dk/lang/dk.locallang_csh_web_info.xml

<label>

Alternatively, when used
under <data> it can be a
string pointing to an
external "include file"!

<labelContext> Array of context descriptions of the default labels.
The "index" attribute contains label key

<label>

TYPO3 Core APIs - 174

Elements containing values (“Value” elements):
All elements defined here must contain a string value and no other XML tags whatsoever!

All values are in utf-8.

(In a PHP array this corresponds to saying that all these elements must be strings or integers.)

Element Format Description
<label> (under <data>) string Value of a original/translated label.

The "index" attribute contains label key.

<label> (under
<orig_hash>)

integer Hash of a translated label.
The "index" attribute contains label key.

<label> (under <orig_text>) string Original default value of a translated label used for making a diff if the original has
changed.
The "index" attribute contains label key.

<label>
(child of <labelContext>)

string Description of a default labels context. This should be used where it cannot be clear for
the translation where the default labels occur. Sometimes the context is important for
the translator in order to translate correctly.
The "index" attribute contains label key.

<description> string Description of the file contents.

<type> string Type of content. Possible values are:

● "module" : Used for labels in the backend modules.
● "database" : Used for labels of database tables and fields.
● "CSH" : Used for Context Sensitive Help (both database tables, fields, backend

modules etc.)

<csh_table> string (Only when the type is "CSH"!)

For CSH it is important to know what "table" the labels belong to. A "table" in the
context of CSH is an identification of a group of labels. This can be an actual table
name (containing all CSH for a single table) or it can be module names etc. with a
prefix to determine type. See CSH section in "Inside TYPO3" for more details.

Examples:
<csh_table>xMOD_csh_corebe</csh_table> (General Core CSH)
<csh_table>_MOD_tools_em</csh_table> (For Extension Mgm. module)
<csh_table>pages</csh_table> (For "pages" table)

<fileId> string File identification string, typically the filename relative to extension folder.

Example:
EXT:lang/locallang_csh_corebe.xml

<keep_original_text> boolean If set to "1" the content of "<orig_text> is updated by the translation tool.

<ext_filename_template> string Template string for automatically created external files (for all other languages than
"default")

Example:
EXT:csh_###LANGKEY###/lang/###LANGKEY###.locallang_csh_corebe.xm
l

<T3locallangExt>
External include files contains a sub-set of the tags of the <T3locallang> format. Basically they contain the <data>,
<orig_hash> and <orig_text> tags but with "<languageKey>" tags inside only for the specific language they used.

When the include file is read the information for the selected language key is read from each of the three tags and merged
into the internal array.

Element Description Child elements
<T3locallangExt> Document tag for the external include files of "<T3locallang>" <data>

<orig_hash>
<orig_text>

<data> See <data> element of <T3locallang> above.

<orig_hash> See <data> element of <T3locallang> above.

<orig_text> See <data> element of <T3locallang> above.

Example: locallang-XML file for a backend module
This example shows a standard locallang-XML file for a backend module. Notice how the <orig_hash> section is included
which means that translators can spot if an original label changes. However the "<orig_text>" section would have been
needed if translators were supposed to also see the difference. But typically that is not enabled since it takes a lot of space

TYPO3 Core APIs - 175

up.
<T3locallang>
 <meta type="array">
 <description>Standard Module labels for Extension Development Evaluator</description>
 <type>module</type>
 <csh_table/>
 <fileId>EXT:extdeveval/mod1/locallang_mod.xml</fileId>
 <labelContext type="array"/>
 </meta>
 <data type="array">
 <languageKey index="default" type="array">
 <label index="mlang_tabs_tab">ExtDevEval</label>
 <label index="mlang_labels_tabdescr">The Extension Development Evaluator tool.</label>
 </languageKey>
 <languageKey index="dk" type="array">
 <label index="mlang_tabs_tab">ExtDevEval</label>
 <label index="mlang_labels_tabdescr">Evalueringsværktøj til udvikling af extensions.</label>
 </languageKey>
....
 </data>
 <orig_hash type="array">
 <languageKey index="dk" type="array">
 <label index="mlang_tabs_tab" type="integer">114927868</label>
 <label index="mlang_labels_tabdescr" type="integer">187879914</label>
 </languageKey>
 </orig_hash>
</T3locallang>

Example: locallang-XML file (CSH) with reference to external include file

The main XML file looks like this. Notice the tag "csh_table" has a value which is important for CSH content so it can be
positioned in the right category.

In the <data> section you can see all default labels. But notice how the value for the "dk" translation is a reference to an
external file! The contents of that file is shown below this listing.

The tag <ext_filename_template> contains a value which means that new translations for other language keys automatically
creates a new file somewhere. The main rule is that the file cannot exist yet. The main point is to make it easy to create new
external include files, in particular group them into extensions carrying such as CSH for a whole language. This value shows
that a new language (eg. "de") will create a new file inside an extension prefixed "csh_".

<T3locallang>
 <meta type="array">
 <description>CSH for Web>Info module(s) (General Framework)</description>
 <type>CSH</type>
 <fileId>EXT:lang/locallang_csh_web_info.xml</fileId>
 <csh_table>_MOD_web_info</csh_table>
 <keep_original_text>1</keep_original_text>
 <ext_filename_template>EXT:csh_###LANGKEY###/lang/###LANGKEY###.locallang_csh_web_info.xml</ext_
filename_template>
 <labelContext type="array"/>
 </meta>
 <data type="array">
 <languageKey index="default" type="array">
 <label index=".alttitle">Web > Info module</label>
 <label index=".description">The idea of the Web>Info ...</label>
 <label index=".details">Conceptually the Web>Info mod...functionality.</label>
 <label index="_.seeAlso">_MOD_web_func,</label>
 <label index="_.image">EXT:lang/cshimages/pagetree_overview_10.png</label>
 <label index=".image_descr">The Web>Info module a....
"info_pagetsconfig".</label>
 </languageKey>
 <languageKey index="dk">EXT:csh_dk/lang/dk.locallang_csh_web_info.xml</languageKey>
 </data>
</T3locallang>

The include file (for "dk") looks like below. Because <keep_original_text> was set in the main file you will also see that the
<orig_text> section is filled in with content as well.

<T3locallangExt>
 <data type="array">
 <languageKey index="dk" type="array">
 <label index="pagetree_overview.alttitle">Sidetræ overblik</label>
 </languageKey>
 </data>
 <orig_hash type="array">
 <languageKey index="dk" type="array">

TYPO3 Core APIs - 176

 <label index="pagetree_overview.alttitle" type="integer">92312309</label>
 </languageKey>
 </orig_hash>
 <orig_text type="array">
 <languageKey index="dk" type="array">
 <label index="pagetree_overview.alttitle">Pagetree Overview</label>
 </languageKey>
 </orig_text>
</T3locallangExt>

TYPO3 Core APIs - 177

